Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 7193 by peter james last updated on 15/Aug/16

Commented by Yozzia last updated on 15/Aug/16

S(n)=1+2^2 −3^3 +4+5^2 −6^3 +7+8^2 −9^3 +...  +[(3n−2)+(3n−1)^2 −(3n)^3 ]  S(t=3n)=Σ_(k=1) ^n [(3k−2)+(3k−1)^2 −(3k)^3 ]  In grouping the terms of S(n) in threes,  t=3n is the total number of terms in the  sum−expression of S(n).   If we require 3n−1 terms, we can write  S(t=3n−1)=Σ_(k=1) ^n [(3k−2)+(3k−1)^2 −(3k)^3 ]+27n^3   where n−1≡ −1 (mod 3)  If we require 3n−2 terms, we write  S(t=3n−2)=Σ_(k=1) ^n [(3k−2)+(3k−1)^2 −(3k)^3 ]+27n^3 −(3n−1)^2   where n−2≡ −2 (mod 3).  So, S(t)= { ((S(t=3n)                                          )),((S(t=3n−1)=S(t=3n)+27n^3                        )),((S(t=3n−2)=S(t=3n)+27n^3 −(3n−1)^2   )) :}  t=number of terms  −−−−−−−−−−−−−−−−−−−−−−−−−−  (3k−2)+(3k−1)^2 −27k^3   =3k−2+9k^2 −6k+1−27k^3   =9k^2 −1−3k−27k^3   Using :  Σ_(k=1) ^n 1=n , Σ_(k=1) ^n k=((n(n+1))/2)  Σ_(k=1) ^n k^2 =((n(n+1)(2n+1))/6) , Σ_(k=1) ^n k^3 =((n^2 (n+1)^2 )/4),  S(n)=9×((n(n+1)(2n+1))/6)−n−((3n(n+1))/2)−((27n^2 (n+1)^2 )/4)  S(n)=((3n(n+1)(2n+1))/2)−n−((3n(n+1))/2)−((27n^2 (n+1)^2 )/4)  S(n)=(n/8)[12(n+1)(2n+1)−8−12(n+1)−54n(n+1)^2 ]  S(n)=(n/8)[12(n+1)(2n+1−1)−8−54n(n+1)^2 ]  S(n)=(n/8)[24n^2 +24n−8−54n^3 −108n^2 −54n]  S(n)=(n/8)[−8−54n^3 −84n^2 −30n]  S(n)=−(n/4)(27n^3 +42n^2 +15n+4)  n=1⇒S(3)=((−1)/4)(27+42+15+4)=−22 (3 terms)  n=2⇒ S(6)=((−1)/2)(27×8+42×4+15×2+4)=−209  (6 terms)  t=5⇒S(5)=−209+6^3 =7=1+2^2 −3^3 +4+5^2   −−−−−−−−−−−−−−−−−−−−−−−−  So, S(t)= { ((((−n)/4)(27n^3 +42n^2 +15n+4)                                       t≡ 0 (mod 3)                        )),((((−n)/4)(27n^3 +42n^2 +15n+4)+27n^3                           t≡ −1 (mod 3)                      )),((((−n(27n^3 +42n^2 +15n+4))/4)+27n^3 −(3n−1)^2     t≡ −2 (mod 3)  )) :}

S(n)=1+2233+4+5263+7+8293+...+[(3n2)+(3n1)2(3n)3]S(t=3n)=nk=1[(3k2)+(3k1)2(3k)3]IngroupingthetermsofS(n)inthrees,t=3nisthetotalnumberoftermsinthesumexpressionofS(n).Ifwerequire3n1terms,wecanwriteS(t=3n1)=nk=1[(3k2)+(3k1)2(3k)3]+27n3wheren11(mod3)Ifwerequire3n2terms,wewriteS(t=3n2)=nk=1[(3k2)+(3k1)2(3k)3]+27n3(3n1)2wheren22(mod3).So,S(t)={S(t=3n)S(t=3n1)=S(t=3n)+27n3S(t=3n2)=S(t=3n)+27n3(3n1)2t=numberofterms(3k2)+(3k1)227k3=3k2+9k26k+127k3=9k213k27k3Using:nk=11=n,nk=1k=n(n+1)2nk=1k2=n(n+1)(2n+1)6,nk=1k3=n2(n+1)24,S(n)=9×n(n+1)(2n+1)6n3n(n+1)227n2(n+1)24S(n)=3n(n+1)(2n+1)2n3n(n+1)227n2(n+1)24S(n)=n8[12(n+1)(2n+1)812(n+1)54n(n+1)2]S(n)=n8[12(n+1)(2n+11)854n(n+1)2]S(n)=n8[24n2+24n854n3108n254n]S(n)=n8[854n384n230n]S(n)=n4(27n3+42n2+15n+4)n=1S(3)=14(27+42+15+4)=22(3terms)n=2S(6)=12(27×8+42×4+15×2+4)=209(6terms)t=5S(5)=209+63=7=1+2233+4+52So,S(t)={n4(27n3+42n2+15n+4)t0(mod3)n4(27n3+42n2+15n+4)+27n3t1(mod3)n(27n3+42n2+15n+4)4+27n3(3n1)2t2(mod3)

Commented by peter james last updated on 16/Aug/16

Thank you so much for the help.

Thankyousomuchforthehelp.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com