All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 7193 by peter james last updated on 15/Aug/16
Commented by Yozzia last updated on 15/Aug/16
S(n)=1+22−33+4+52−63+7+82−93+...+[(3n−2)+(3n−1)2−(3n)3]S(t=3n)=∑nk=1[(3k−2)+(3k−1)2−(3k)3]IngroupingthetermsofS(n)inthrees,t=3nisthetotalnumberoftermsinthesum−expressionofS(n).Ifwerequire3n−1terms,wecanwriteS(t=3n−1)=∑nk=1[(3k−2)+(3k−1)2−(3k)3]+27n3wheren−1≡−1(mod3)Ifwerequire3n−2terms,wewriteS(t=3n−2)=∑nk=1[(3k−2)+(3k−1)2−(3k)3]+27n3−(3n−1)2wheren−2≡−2(mod3).So,S(t)={S(t=3n)S(t=3n−1)=S(t=3n)+27n3S(t=3n−2)=S(t=3n)+27n3−(3n−1)2t=numberofterms−−−−−−−−−−−−−−−−−−−−−−−−−−(3k−2)+(3k−1)2−27k3=3k−2+9k2−6k+1−27k3=9k2−1−3k−27k3Using:∑nk=11=n,∑nk=1k=n(n+1)2∑nk=1k2=n(n+1)(2n+1)6,∑nk=1k3=n2(n+1)24,S(n)=9×n(n+1)(2n+1)6−n−3n(n+1)2−27n2(n+1)24S(n)=3n(n+1)(2n+1)2−n−3n(n+1)2−27n2(n+1)24S(n)=n8[12(n+1)(2n+1)−8−12(n+1)−54n(n+1)2]S(n)=n8[12(n+1)(2n+1−1)−8−54n(n+1)2]S(n)=n8[24n2+24n−8−54n3−108n2−54n]S(n)=n8[−8−54n3−84n2−30n]S(n)=−n4(27n3+42n2+15n+4)n=1⇒S(3)=−14(27+42+15+4)=−22(3terms)n=2⇒S(6)=−12(27×8+42×4+15×2+4)=−209(6terms)t=5⇒S(5)=−209+63=7=1+22−33+4+52−−−−−−−−−−−−−−−−−−−−−−−−So,S(t)={−n4(27n3+42n2+15n+4)t≡0(mod3)−n4(27n3+42n2+15n+4)+27n3t≡−1(mod3)−n(27n3+42n2+15n+4)4+27n3−(3n−1)2t≡−2(mod3)
Commented by peter james last updated on 16/Aug/16
Thankyousomuchforthehelp.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com