All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 74383 by aliesam last updated on 23/Nov/19
Commented by mathmax by abdo last updated on 23/Nov/19
A(x)=16x−x−32x−4216(x−4)2letusehospitaltheoremletf(x)=16x−x−32x−42andg(x)=16(x−4)2wehavef′(x)=161−12x2x−x−32=82x−12xx−x−32=4×2x−1x2−xx−32andf(2)(x)=4(1x)x2−xx−(2x−1)×(x2−xx)′2x2−xxx2−xx(x2−xx)′=2x−(x+x12x)=2x−(x+x2)=2x−32x⇒f(2)(x)=42(x2−xx)−(2x−1)(2x−3x2)2xx2−xx(x2−xx)⇒f(2)(4)=4×2(16−8)−(3)(8−3)2.28(8)=16−15162=1162g(x)=16(x−4)2⇒g′(x)=32(x−4)andg(2)(x)=32⇒limx→4A(x)=1162×32=116×322
Commented by aliesam last updated on 23/Nov/19
godblessyousirthankyou
youarewelcome.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com