Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 74446 by rajesh4661kumar@gmail.com last updated on 24/Nov/19

Answered by Kunal12588 last updated on 24/Nov/19

I=∫e^(tan^(−1) x) (((1+x+x^2 )/(1+x^2 )))dx  let t=tan^(−1) x  ⇒dt=(dx/(1+x^2 ))  I=∫e^t (1+tan t + tan^2  t)dt  ⇒I=∫e^t (tan t + sec^2  t)dt  ⊛  ⇒I=e^t tan t +C  ⇒I=xe^(tan^(−1) x)  +C  ⊛ ∫e^x [f(x)+f ′(x)]dx=e^x f(x)+C

I=etan1x(1+x+x21+x2)dxlett=tan1xdt=dx1+x2I=et(1+tant+tan2t)dtI=et(tant+sec2t)dtI=ettant+CI=xetan1x+Cex[f(x)+f(x)]dx=exf(x)+C

Commented by Kunal12588 last updated on 24/Nov/19

∫e^x [f(x)+f ′(x)]dx  =∫e^x f(x)dx+∫e^x f ′(x) dx  =e^x f(x)−∫e^x f ′(x)dx+∫e^x f ′(x)dx  =e^x f(x)+C

ex[f(x)+f(x)]dx=exf(x)dx+exf(x)dx=exf(x)exf(x)dx+exf(x)dx=exf(x)+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com