Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 74473 by arkanmath7@gmail.com last updated on 24/Nov/19

Commented by mathmax by abdo last updated on 24/Nov/19

∣z−1∣=1 ⇒z−1=e^(iθ)     0≤θ≤π ⇒z=1+e^(iθ)   ∫_C (z^− )^2 dz =∫_0 ^(2π)   (1+e^(−iθ) )^2 i e^(iθ)  dθ   =i ∫_0 ^(2π) (1+2e^(−iθ)  +e^(−2iθ) )e^(iθ)  dθ  =i ∫_0 ^(2π) (e^(iθ)  +2  +e^(−iθ) )dθ  =i ∫_0 ^(2π) (e^(iθ)  +e^(−iθ) )dθ  +2i∫_0 ^(2π)  dθ  =2i ∫_0 ^(2π)  cosθ dθ  +4iπ =2i[sinθ]_0 ^(2π)  +4iπ =0 +4iπ =4iπ

z1∣=1z1=eiθ0θπz=1+eiθC(z)2dz=02π(1+eiθ)2ieiθdθ=i02π(1+2eiθ+e2iθ)eiθdθ=i02π(eiθ+2+eiθ)dθ=i02π(eiθ+eiθ)dθ+2i02πdθ=2i02πcosθdθ+4iπ=2i[sinθ]02π+4iπ=0+4iπ=4iπ

Commented by mathmax by abdo last updated on 24/Nov/19

error of typo   0≤θ ≤2π .

erroroftypo0θ2π.

Answered by mind is power last updated on 24/Nov/19

{z∈C,∣z−1∣=1}={1+e^(it) ,t∈[0,2π]}  ∫_C z^2^−  dz=∫_0 ^(2π) (1+e^(−it) )^2 .ie^(it) dt  =∫i(1+e^(−2it) +2e^(−it) )e^(it) dt  =i∫_0 ^(2π) (e^(it) +e^(−it) +2)dt  =4iπ

{zC,z1∣=1}={1+eit,t[0,2π]}Cz2dz=02π(1+eit)2.ieitdt=i(1+e2it+2eit)eitdt=i02π(eit+eit+2)dt=4iπ

Commented by arkanmath7@gmail.com last updated on 24/Nov/19

thnx   after I posted it, I solved it.

thnxafterIpostedit,Isolvedit.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com