All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 75027 by chess1 last updated on 06/Dec/19
Commented by mathmax by abdo last updated on 06/Dec/19
x+z=3⇒0⩽x⩽3and0⩽z⩽3wehave0⩽y⩽2⇒∫∫∫dxdydz(x+y+z)3=∫03(∫o2(∫03dx(x+y+z)3)dy)dzwehave∫03dx(x+y+z)3=[−12(x+y+z)−2]x=03=−12{(3+y+z)−2−(y+z)−2}=12(y+z)2−1(y+z+3)2⇒∫02(∫03dx(x+y+z)3)dy=12∫02dy(y+z)2−12∫02dy(y+z+3)2=12[−1y+z]y=02+12[1(y+z+3)]y=02=−12{12+z−1z}+12{15+z−13+z}⇒∫∫∫(...)dxdydz=−12∫03(1z+2−1z)dz+12∫03(15+z−13+z)dzMissing \left or extra \rightMissing \left or extra \right=∞itseemsthatthisintegralisdivergent...!
Answered by MJS last updated on 06/Dec/19
∫dz(x+y+z)3=−12(x+y+z)2+C1∫(−12(x+y+z)2+C1)dy=12(x+y+z)+C1y+C2∫(12(x+y+z)+C1y+C2)dx=12ln∣x+y+z∣+C1xy+C2x+C3
Terms of Service
Privacy Policy
Contact: info@tinkutara.com