Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 75027 by chess1 last updated on 06/Dec/19

Commented by mathmax by abdo last updated on 06/Dec/19

x+z=3 ⇒0≤x≤3 and 0≤z≤3   we have  0≤y≤2 ⇒  ∫∫∫  ((dxdydz)/((x+y+z)^3 )) =∫_0 ^3 ( ∫_o ^2   (∫_0 ^3   (dx/((x+y+z)^3 )))dy)dz  we have  ∫_0 ^3  (dx/((x+y+z)^3 )) =[−(1/2)(x+y+z)^(−2) ]_(x=0) ^3 =−(1/2){(3+y+z)^(−2) −(y+z)^(−2) }  =(1/(2(y+z)^2 ))−(1/((y+z+3)^2 )) ⇒  ∫_0 ^2 (∫_0 ^3   (dx/((x+y+z)^3 )))dy =(1/2) ∫_0 ^2  (dy/((y+z)^2 ))−(1/2)∫_0 ^2 (dy/((y+z+3)^2 ))  =(1/2)[((−1)/(y+z))]_(y=0) ^2  +(1/2)[(1/((y+z+3)))]_(y=0) ^2   =−(1/2){(1/(2+z))−(1/z)} +(1/2){(1/(5+z))−(1/(3+z))} ⇒  ∫∫∫(...)dxdydz =−(1/2)∫_0 ^3 ((1/(z+2))−(1/z))dz+(1/2)∫_0 ^3 ((1/(5+z))−(1/(3+z)))dz  =−(1/2)[ln∣((z+2)/z)∣]_0 ^3  +(1/2)[ln∣((z+5)/(z+3))∣]_0 ^3   =∞   it seems that this integral  is divergent...!

x+z=30x3and0z3wehave0y2dxdydz(x+y+z)3=03(o2(03dx(x+y+z)3)dy)dzwehave03dx(x+y+z)3=[12(x+y+z)2]x=03=12{(3+y+z)2(y+z)2}=12(y+z)21(y+z+3)202(03dx(x+y+z)3)dy=1202dy(y+z)21202dy(y+z+3)2=12[1y+z]y=02+12[1(y+z+3)]y=02=12{12+z1z}+12{15+z13+z}(...)dxdydz=1203(1z+21z)dz+1203(15+z13+z)dzMissing \left or extra \right=itseemsthatthisintegralisdivergent...!

Answered by MJS last updated on 06/Dec/19

∫(dz/((x+y+z)^3 ))=−(1/(2(x+y+z)^2 ))+C_1   ∫(−(1/(2(x+y+z)^2 ))+C_1 )dy=(1/(2(x+y+z)))+C_1 y+C_2   ∫((1/(2(x+y+z)))+C_1 y+C_2 )dx=(1/2)ln ∣x+y+z∣ +C_1 xy+C_2 x+C_3

dz(x+y+z)3=12(x+y+z)2+C1(12(x+y+z)2+C1)dy=12(x+y+z)+C1y+C2(12(x+y+z)+C1y+C2)dx=12lnx+y+z+C1xy+C2x+C3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com