All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 7514 by Tawakalitu. last updated on 01/Sep/16
Answered by Yozzia last updated on 01/Sep/16
sin(πcosα)=cos(πsinα).Usingsina=cos(π2−a),wegetcos(π2−πcosα)=cos(πsinα)⇒π2−πcosα=2nπ±πsinα(n∈Z)∓πsinα−πcosα=2nπ−π2∓sinα−cosα=2n−12−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Supposewewrite+inplaceof∓.∴sinα−cosα=4n−122sin(α−π4)=4n−12sin(α−π4)=4n−122Since∣sin(α−π4)∣⩽1⇒∣4n−122∣⩽1⇒∣4n−1∣⩽22<4⇒−4<4n−1<4−3<4n<5−34<n<54forn∈Z⇒n=0or1.Forn=0,sin(α−π4)=−122⇒sin2(α−π4)=18⇒1−cos(2α−π2)2=18⇒cos(−(2α−π2))=34⇒sin2α=34⇒α=12sin−134Supposen=1.∴sin(α−0.25π)=322But,sin2(α−0.25π)=98>1.Hence,n≠1.−−−−−−−−−−−−−−−−−−−−−−−−−Supposewewrite−inplaceof∓.Wemusthaven=0.∴−sinα−cosα=−122sin(α+π4)=12⇒sin2(α+π4)=18⇒1−cos(2α+π/2)2=18∴cos(2α+π2)=34−sin2α=34⇒α=−12sin−134−−−−−−−−−−−−−−−−−−−−−∴α=±12sin−134ifsin(πcosα)=cos(πsinα).Generally,α=2nπ±12sin−134sincesinu=sin(u+2nπ)andcosk=cos(k+2nπ)foranyu,k∈R.
Commented by Tawakalitu. last updated on 01/Sep/16
Wow,thankssomuch.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com