Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 75209 by vishalbhardwaj last updated on 08/Dec/19

Answered by Kunal12588 last updated on 08/Dec/19

x+y+z=xyz  let x=tan α,y=tan β, z=tan γ  tan α + tan β + tan γ = tan α tan β tan γ  ⇒tan γ (1−tan α tan β)=−(tan α+tan β)  ⇒tan γ=−((tan α+tanβ)/(1−tan α tan β))=−tan (α+β)  ⇒tan (α+β)=−tan γ = tan (π−γ)  ⇒α+β=π−γ  ⇒α+β+γ=π  ⇒2α+2β=2π−2γ  ⇒tan(2α+2β)=tan(2π−2γ)  ⇒((tan 2α + tan 2β)/(1−tan 2α tan 2β))=−tan 2γ  ⇒tan 2α+tan 2β =−tan 2γ+tan 2α tan 2β tan 2γ  ⇒tan 2α+tan 2β+tan2γ=tan 2α tan 2β tan 2γ  ⇒((2tan α)/(1−tan^2 α))+((2tan β)/(1−tan^2 β))+((2tan γ)/(1−tan^2 γ))=((2tan α)/(1−tan^2 α))×((2tan β)/(1−tan^2 β))×((2tan γ)/(1−tan^2 γ))  ⇒((2x)/(1−x^2 ))+((2y)/(1−y^2 ))+((2z)/(1−z^2 ))=(((2x)/(1−x^2 )))(((2y)/(1−y^2 )))(((2z)/(1−z^2 )))

x+y+z=xyzletx=tanα,y=tanβ,z=tanγtanα+tanβ+tanγ=tanαtanβtanγtanγ(1tanαtanβ)=(tanα+tanβ)tanγ=tanα+tanβ1tanαtanβ=tan(α+β)tan(α+β)=tanγ=tan(πγ)α+β=πγα+β+γ=π2α+2β=2π2γtan(2α+2β)=tan(2π2γ)tan2α+tan2β1tan2αtan2β=tan2γtan2α+tan2β=tan2γ+tan2αtan2βtan2γtan2α+tan2β+tan2γ=tan2αtan2βtan2γ2tanα1tan2α+2tanβ1tan2β+2tanγ1tan2γ=2tanα1tan2α×2tanβ1tan2β×2tanγ1tan2γ2x1x2+2y1y2+2z1z2=(2x1x2)(2y1y2)(2z1z2)

Answered by Kunal12588 last updated on 08/Dec/19

Terms of Service

Privacy Policy

Contact: info@tinkutara.com