Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 75669 by peter frank last updated on 15/Dec/19

Commented by mathmax by abdo last updated on 15/Dec/19

let A =∫ (dθ/(sin^4 θ +cos^4 θ)) ⇒ A =∫    (dθ/((cos^2 θ+sin^2 θ)^2 −2cos^2 θ sin^2 θ))  =∫  (dθ/(1−2((1/2)sin(2θ))^2 )) =∫  (dθ/(1−(1/2)sin^2 (2θ))) =∫  (dθ/(1−(1/2)(((1−cos(4θ))/2))))  =∫  ((4dθ)/(4−1+cos(4θ))) =4∫  (dθ/(3+cos(4θ))) =_(4θ =t)   4 ∫   (dt/(4(3+cost)))  =∫   (dt/(3+cost)) =_(tan((t/2))=u)     ∫   (1/(3+((1−u^2 )/(1+u^2 ))))((2du)/(1+u^2 ))  =∫  ((2du)/(3+3u^2 +1−u^2 )) =∫  ((2du)/(4+2u^2 )) =∫   (du/(2+u^2 )) =_(u=(√2)α)    ∫   (((√2)dα)/(2(1+α^2 )))  =((√2)/2) arctan(α)+C =((√2)/2) arctan((u/(√2)))+C  =((√2)/2) arctan((1/(√2))tan((t/2)))+C =((√2)/2) arctan((1/(√2))tan(2θ)) +C  .

letA=dθsin4θ+cos4θA=dθ(cos2θ+sin2θ)22cos2θsin2θ=dθ12(12sin(2θ))2=dθ112sin2(2θ)=dθ112(1cos(4θ)2)=4dθ41+cos(4θ)=4dθ3+cos(4θ)=4θ=t4dt4(3+cost)=dt3+cost=tan(t2)=u13+1u21+u22du1+u2=2du3+3u2+1u2=2du4+2u2=du2+u2=u=2α2dα2(1+α2)=22arctan(α)+C=22arctan(u2)+C=22arctan(12tan(t2))+C=22arctan(12tan(2θ))+C.

Commented by peter frank last updated on 15/Dec/19

thank you

thankyou

Commented by mathmax by abdo last updated on 15/Dec/19

you are welcome.

youarewelcome.

Answered by mr W last updated on 15/Dec/19

sin^2  θ+cos^2  θ=1  (sin^2  θ+cos^2  θ)^2 =1^2   sin^4  θ+cos^4  θ+2 sin^2  θ cos^2  θ=1  sin^4  θ+cos^4  θ+((sin^2  2θ)/2)=1  sin^4  θ+cos^4  θ=((2−sin^2  2θ)/2)  sin^4  θ+cos^4  θ=((((√2)−sin 2θ)((√2)+sin 2θ))/2)  ∫(dθ/(sin^4  θ+cos^4  θ))  =∫((2 dθ)/(((√2)−sin 2θ)((√2)+sin 2θ)))  =∫(du/(((√2)−sin u)((√2)+sin u))) with u=2θ  =(1/(2(√2)))∫[(1/((√2)−sin u))+(1/((√2)+sin u))]du  =(1/(2(√2)))[2 tan^(−1) ((√2) tan (u/2)−1)+2 tan^(−1) ((√2) tan (u/2)+1)]+C  =(1/(√2))[tan^(−1) ((√2) tan θ−1)+tan^(−1) ((√2) tan θ+1)]+C

sin2θ+cos2θ=1(sin2θ+cos2θ)2=12sin4θ+cos4θ+2sin2θcos2θ=1sin4θ+cos4θ+sin22θ2=1sin4θ+cos4θ=2sin22θ2sin4θ+cos4θ=(2sin2θ)(2+sin2θ)2dθsin4θ+cos4θ=2dθ(2sin2θ)(2+sin2θ)=du(2sinu)(2+sinu)withu=2θ=122[12sinu+12+sinu]du=122[2tan1(2tanu21)+2tan1(2tanu2+1)]+C=12[tan1(2tanθ1)+tan1(2tanθ+1)]+C

Commented by peter frank last updated on 15/Dec/19

thank you

thankyou

Commented by behi83417@gmail.com last updated on 15/Dec/19

=(1/(√2)).tg^(−1) ((((√2)tgθ)/(1−tg^2 θ)))+C=(1/(√2))tg^(−1) (((√2)/2).tg2𝛉)+C

=12.tg1(2tgθ1tg2θ)+C=12tg1(22.tg2θ)+C

Answered by vishalbhardwaj last updated on 24/Dec/19

∫  ((sec^4 θ dθ)/(tan^2 θ+1)) = ∫ ((sec^2 θ.sec^2 θ)/(tan^4 θ+1)) dθ   ∫ (((1+tan^2 θ)sec^2 θ)/((1+tan^4 θ))) dθ  (let tanθ =t)  ⇒  sec^2 θ dθ = dt   = ∫ (((1+t^2 ))/((1+t^4 ))) dt  = ∫ ((t^2 (1+(1/t^2 )))/(t^2 (t^2 +(1/t^2 )))) dt  = ∫ (((1+(1/t^2 )))/((t^2 +(1/t^2 )))) dt  = ∫ (((1+(1/t^2 )))/((t−(1/t))^2 +((√2))^2 )) dt  let t−(1/t)= z ⇒ (1+(1/t^2 )) dt = dz  = ∫ (dz/(z^2 +((√2))^2 ))  = (1/(√2)) tan^(−1) ((z/(√2))) +C  = (1/(√2)) tan^(−1) (((t−(1/t))/(√2))) +C  = (1/(√2)) tan^(−1) (((tanx−cotx)/(√2)))+C

sec4θdθtan2θ+1=sec2θ.sec2θtan4θ+1dθ(1+tan2θ)sec2θ(1+tan4θ)dθ(lettanθ=t)sec2θdθ=dt=(1+t2)(1+t4)dt=t2(1+1t2)t2(t2+1t2)dt=(1+1t2)(t2+1t2)dt=(1+1t2)(t1t)2+(2)2dtlett1t=z(1+1t2)dt=dz=dzz2+(2)2=12tan1(z2)+C=12tan1(t1t2)+C=12tan1(tanxcotx2)+C

Commented by malwaan last updated on 15/Dec/19

fantastic  thankx 4 all

fantasticthankx4all

Answered by MJS last updated on 15/Dec/19

∫(dθ/(sin^4  θ +cos^4  θ))=4∫(dθ/(3+cos 4θ))=       [t=(1/2)tan 2θ → dθ=(dt/(2(t^2 +1)))]  =∫(dt/(t^2 +2))=((√2)/2)arctan ((t(√2))/2) =  =((√2)/2)arctan (((√2)tan 2θ)/2) +C

dθsin4θ+cos4θ=4dθ3+cos4θ=[t=12tan2θdθ=dt2(t2+1)]=dtt2+2=22arctant22==22arctan2tan2θ2+C

Commented by peter frank last updated on 15/Dec/19

thank you

thankyou

Commented by peter frank last updated on 02/Jan/20

sorry sir i pressing  flag option by mistake

sorrysiripressingflagoptionbymistake

Terms of Service

Privacy Policy

Contact: info@tinkutara.com