Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 7582 by A WLAN last updated on 04/Sep/16

Commented by A WLAN last updated on 04/Sep/16

How to solve this problem?

Howtosolvethisproblem?

Answered by Yozzia last updated on 04/Sep/16

w=1/z. You can plot the initial point z  and the point w on an Argand diagram to deduce the angle of  rotation.  z=1⇒w=1/1=z⇒ angle of rotation is 0°   about the origin. z=1 is invariant under the transformation.  z=i⇒w=1/i=−i=−z⇒ angle of rotation is 180°   about the origin.   −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−  Alternatively, we can find the argument  of (w/z). Let w=r_1 e^(iφ ) and z=r_2 e^(iθ) .  (w/z)=(r_1 /r_2 )e^(i(φ−θ)) ⇒arg(w/z)=φ−θ=arg(w)−arg(z)  For z=1⇒arg(z)=θ=tan^(−1) (0/1)=0 radians  ∵ w=1/z⇒ w=1⇒arg(w)=φ=tan^(−1) (0/1)=0 radians  ∴ arg(w/z)=0−0=0 radians.   ⇒The angle between w and z is 0 radians.  ⇒The angle of rotation about the origin is 0 radians.  z=i⇒ arg(z)=θ=lim_(x→0^+ ) tan^(−1) (1/x)=(π/2)  w=1/z=1/i=−i⇒ arg(w)=φ=lim_(x→0^+ ) tan((−1)/x)=−lim_(x→0^+ ) tan^(−1) (1/x)=((−π)/2)  ∴ arg(w/z)=((−π)/2)−(π/2)=−π.  ⇒ The angle between w and z is π radians.  ⇒The angle of rotation is π radians about the origin.

w=1/z.YoucanplottheinitialpointzandthepointwonanArganddiagramtodeducetheangleofrotation.z=1w=1/1=zangleofrotationis0°abouttheorigin.z=1isinvariantunderthetransformation.z=iw=1/i=i=zangleofrotationis180°abouttheorigin.Alternatively,wecanfindtheargumentofwz.Letw=r1eiϕandz=r2eiθ.wz=r1r2ei(ϕθ)arg(w/z)=ϕθ=arg(w)arg(z)Forz=1arg(z)=θ=tan101=0radiansw=1/zw=1arg(w)=ϕ=tan101=0radiansarg(w/z)=00=0radians.Theanglebetweenwandzis0radians.Theangleofrotationabouttheoriginis0radians.z=iarg(z)=θ=limx0+tan11x=π2w=1/z=1/i=iarg(w)=ϕ=limx0+tan1x=limx0+tan11x=π2arg(w/z)=π2π2=π.Theanglebetweenwandzisπradians.Theangleofrotationisπradiansabouttheorigin.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com