Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 75939 by ahmadshahhimat775@gmail.com last updated on 21/Dec/19

Commented by JDamian last updated on 21/Dec/19

c) (n!)^(1/n)

c)(n!)1n

Commented by mathmax by abdo last updated on 21/Dec/19

let A(x)=(((1^x  +2^x  +3^x  +... +n^x )/n))^(1/x)  ⇒  A(x)=e^((1/x)ln(((1^x  +2^x +....+n^x )/n)))  let find lim_(x→0) (1/x)ln(((1^x  +2^x  +3^x +...+n^x )/n))  let use hospital theorem  with  u(x)=ln(1^(x )  +2^x  +3^x  +...+n^x )  and v=x  we have u^′ (x)=(((1^x  +2^x +3^x +...n^x )^′ )/(1^x  +2^x  +3^x  +...+n^x )) =(((1+e^(xln(2))  +e^(xln(3)) +...e^(xln(n)) )^′ )/(1^x  +2^x  +3^x  +...+n^x ))  =((ln(2)2^x  +ln(3)3^x +...+ln(n)n^x )/(1^x  +2^x  +3^x  +...+n^x )) ⇒  lim_(x→0)   u^′ (x)=((ln(1)+ln(2)+...ln(n))/n) =((ln(n!))/n)  ⇒  lim_(x→0)   A(x) =e^((ln(n!))/n)  =(e^(ln(n!)) )^(1/n)  =(n!)^(1/n)

letA(x)=(1x+2x+3x+...+nxn)1xA(x)=e1xln(1x+2x+....+nxn)letfindlimx01xln(1x+2x+3x+...+nxn)letusehospitaltheoremwithu(x)=ln(1x+2x+3x+...+nx)andv=xwehaveu(x)=(1x+2x+3x+...nx)1x+2x+3x+...+nx=(1+exln(2)+exln(3)+...exln(n))1x+2x+3x+...+nx=ln(2)2x+ln(3)3x+...+ln(n)nx1x+2x+3x+...+nxlimx0u(x)=ln(1)+ln(2)+...ln(n)n=ln(n!)nlimx0A(x)=eln(n!)n=(eln(n!))1n=(n!)1n

Terms of Service

Privacy Policy

Contact: info@tinkutara.com