Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 76108 by Maclaurin Stickker last updated on 23/Dec/19

Commented by Maclaurin Stickker last updated on 23/Dec/19

in the figure, the circumferences  have radius 8 cm and 6 cm and the  distance between their centers is 12 cm.   If QP=PR, find QP.

inthefigure,thecircumferenceshaveradius8cmand6cmandthedistancebetweentheircentersis12cm.IfQP=PR,findQP.

Answered by mr W last updated on 23/Dec/19

Commented by mr W last updated on 23/Dec/19

r_1 =8, r_2 =6  let AP=2b  (√(8^2 −b^2 ))+(√(6^2 −b^2 ))=12  ((√(8^2 −b^2 )))^2 =(12−(√(6^2 −b^2 )))^2   0=116−24(√(36−b^2 ))  29=6(√(36−b^2 ))  (((29)/6))^2 =36−b^2   ⇒b=(√(36−(((29)/6))^2 ))=((√(455))/6)  AP=2b=((√(455))/3)  α=cos^(−1) (b/r_1 )=cos^(−1) ((√(455))/(48))  β=cos^(−1) (b/r_2 )=cos^(−1) ((√(455))/(36))  let QP=PR=x  sin ∠QAP=(x/(2r_1 ))=(x/(16))  sin ∠PAR=(x/(2r_2 ))=(x/(12))  ∠QAP+∠PAR=π−(α+β)  cos (∠QAP+∠PAR)=−cos (α+β)  ((√((16^2 −x^2 )(12^2 −x^2 )))/(16×12))−(x^2 /(16×12))=((43×29)/(48×36))−((455)/(36×48))  (√((16^2 −x^2 )(12^2 −x^2 )))−x^2 =88  (16^2 −x^2 )(12^2 −x^2 )=(88+x^2 )^2   16^2 ×12^2 −88^2 =(16^2 +12^2 +2×88)x^2   455=9x^2   ⇒x=((√(455))/3)

r1=8,r2=6letAP=2b82b2+62b2=12(82b2)2=(1262b2)20=1162436b229=636b2(296)2=36b2b=36(296)2=4556AP=2b=4553α=cos1br1=cos145548β=cos1br2=cos145536letQP=PR=xsinQAP=x2r1=x16sinPAR=x2r2=x12QAP+PAR=π(α+β)cos(QAP+PAR)=cos(α+β)(162x2)(122x2)16×12x216×12=43×2948×3645536×48(162x2)(122x2)x2=88(162x2)(122x2)=(88+x2)2162×122882=(162+122+2×88)x2455=9x2x=4553

Terms of Service

Privacy Policy

Contact: info@tinkutara.com