Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 76146 by john santuy last updated on 24/Dec/19

Commented by john santuy last updated on 24/Dec/19

how to proof?

howtoproof?

Commented by mr W last updated on 25/Dec/19

value given in question ((π/(√6))) is  correct, sir.   i think you had a mistake in your  calculation.  it should be  A =−∫_1 ^(+∞) (√(−1+(√t)))((−4)/((t+3)^2 ))dt   please recheck.

valuegiveninquestion(π6)iscorrect,sir.ithinkyouhadamistakeinyourcalculation.itshouldbeA=1+1+t4(t+3)2dtpleaserecheck.

Commented by mr W last updated on 25/Dec/19

i have pointed the error in your  answer. it′s in the third line:  A =−∫_1 ^(+∞) (√(−1+t))((−4)/((t+3)^2 ))dt =......  it should be  A =−∫_1 ^(+∞) (√(−1+(√t)))((−4)/((t+3)^2 ))dt =......

ihavepointedtheerrorinyouranswer.itsinthethirdline:A=1+1+t4(t+3)2dt=......itshouldbeA=1+1+t4(t+3)2dt=......

Commented by abdomathmax last updated on 25/Dec/19

yes you are right sir ...i will coreect the answer...

yesyouarerightsir...iwillcoreecttheanswer...

Commented by mathmax by abdo last updated on 26/Dec/19

let I =∫_0 ^1 (√(−1+(√((4/x)−3))))dx  cha7gement (√((4/x)−3))=t give  (4/x) −3 =t^2  ⇒4−3x=t^2 x ⇒4=(t^2  +3)x ⇒x=(4/(t^2  +3)) ⇒  dx =((−8t)/((t^2  +3)^2 )) ⇒ I =−∫_1 ^(+∞) (√(t−1))×((−8t)/((t^2 +3)^2 ))dt  =8 ∫_1 ^(+∞)  ((t(√(t−1)))/((t^(2 ) +3)^2 ))dt =_((√(t−1))=u)  8 ∫_o ^(+∞) (((1+u^2 )u)/(((1+u^2 )^2 +3)^2 ))(2u)du  =16 ∫_0 ^∞   ((u^2 (1+u^2 ))/((u^4  +2u^2 +4)^2 ))du =8 ∫_(−∞) ^(+∞)  ((u^4 +u^2 )/((u^4  +2u^2  +4)^2 ))du  letϕ(z)=((z^4  +z^2 )/((z^4  +2z^2  +4)^2 ))  poles of ϕ?  z^4  +2z^2  +4 =0 ⇒t^2  +2t +4=0  with t=z^2   Δ^′ =1−4 =−3 ⇒t_1 =−1+(√3)=2(−(1/2)+((√3)/2)) =2e^((i2π)/3)   t_1 =−1−(√3)=2 e^(−((i2π)/3))  ⇒z^4  +2z^2  +4 =(z^2 −2e^((i2π)/3) )(z^2 −2e^(−((i2π)/3)) )  =(z−(√2)e^((iπ)/3) )(z+(√2)e^((iπ)/3) )(z−(√2)e^(−((iπ)/3)) )(z+(√2)e^(−((iπ)/3)) )⇒  ϕ(z) =((z^4  +z^2 )/((z−(√2)e^((iπ)/3) )^2 (z+(√2)e^((iπ)/3) )^2 (z−(√2)e^(−((iπ)/3)) )(z+(√2)e^(−((iπ)/3)) )))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ {Res(ϕ,(√2)e^((iπ)/3) )+Res(ϕ,−(√2)e^(−((iπ)/3)) )}  Res(ϕ,(√2)e^((iπ)/3) ) =lim_(z→(√2)e^((iπ)/3) )    (1/((2−1)!)){(z−(√2)e^((iπ)/3) )^2 ϕ(z)}^((1))   =lim_(z→(√2)e^((iπ)/3) )     {((z^4  +z^2 )/((z+(√2)e^((iπ)/3) )^2 (z−(√2)e^(−((iπ)/3)) )^2 (z+(√2)e^(−((iπ)/3)) )^2 ))}^((1))   ...be continued...

letI=011+4x3dxcha7gement4x3=tgive4x3=t243x=t2x4=(t2+3)xx=4t2+3dx=8t(t2+3)2I=1+t1×8t(t2+3)2dt=81+tt1(t2+3)2dt=t1=u8o+(1+u2)u((1+u2)2+3)2(2u)du=160u2(1+u2)(u4+2u2+4)2du=8+u4+u2(u4+2u2+4)2duletφ(z)=z4+z2(z4+2z2+4)2polesofφ?z4+2z2+4=0t2+2t+4=0witht=z2Δ=14=3t1=1+3=2(12+32)=2ei2π3t1=13=2ei2π3z4+2z2+4=(z22ei2π3)(z22ei2π3)=(z2eiπ3)(z+2eiπ3)(z2eiπ3)(z+2eiπ3)φ(z)=z4+z2(z2eiπ3)2(z+2eiπ3)2(z2eiπ3)(z+2eiπ3)+φ(z)dz=2iπ{Res(φ,2eiπ3)+Res(φ,2eiπ3)}Res(φ,2eiπ3)=limz2eiπ31(21)!{(z2eiπ3)2φ(z)}(1)=limz2eiπ3{z4+z2(z+2eiπ3)2(z2eiπ3)2(z+2eiπ3)2}(1)...becontinued...

Answered by mr W last updated on 24/Dec/19

y=(√(−1+(√((4/x)−3))))  ⇒x=(4/(3+(1+y^2 )^2 ))  ∫_0 ^1 ydx=∫_0 ^∞ xdy=∫_0 ^∞ (4/(3+(1+y^2 )^2 ))dy  =(1/(2(√2)))[ln ((2+y(y+(√2)))/(2+y(y−(√2))))]_0 ^∞ +(1/(√6))[tan^(−1) (((√2)y+1)/(√3))+tan^(−1) (((√2)y−1)/(√3))]_0 ^∞   =(1/(2(√2)))(0)+(1/(√6))((π/2)+(π/2)−((π/6)−(π/6)))  =(π/(√6))

y=1+4x3x=43+(1+y2)201ydx=0xdy=043+(1+y2)2dy=122[ln2+y(y+2)2+y(y2)]0+16[tan12y+13+tan12y13]0=122(0)+16(π2+π2(π6π6))=π6

Commented by john santuy last updated on 24/Dec/19

thanks sir

thankssir

Commented by mr W last updated on 06/Jun/20

Commented by mr W last updated on 06/Jun/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com