All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 76913 by Ajao yinka last updated on 31/Dec/19
Answered by ~blr237~ last updated on 01/Jan/20
letitbeA1+x+....+x100=1−x1011−xA=∫01x49(1−x)1−x101dx=∫01x49(1−x)∑∞n=0x101ndxA=∑∞n=0∫01x101n+49(1−x)dx=∑∞n=0B(101n+50,2)=∑∞n=0Γ(101n+50)Γ(2)Γ(101n+52)=∑∞n=01(101n+51)(101n+50)=1(101)2∑∞n=01(n+51101)(n+50101)=11012×ψ(51101)−ψ(50101)51101−50101=ψ(51101)−ψ(50101)101withψ=Γ′Γ
Commented by jagoll last updated on 01/Jan/20
whatψfunctionsir?
Commented by 20092104 last updated on 10/Feb/20
digammafunctionψ(x)=ddxln(Γ(x))=Γ′(x)Γ(x)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com