Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 7945 by Rasheed Soomro last updated on 25/Sep/16

Commented by Rasheed Soomro last updated on 25/Sep/16

In above figure AF ,a diameter of the  circle with centre G has been trisected  at B & D (i-e AB=BD=DF)  Is there any point H on the circle for  which                             ∠AHB=∠BHD=∠DHF  I-E                          β=γ=δ     ?  If   yes then what is ∠HGF?

InabovefigureAF,adiameterofthecirclewithcentreGhasbeentrisectedatB&D(ieAB=BD=DF)IsthereanypointHonthecircleforwhichAHB=BHD=DHFIEβ=γ=δ?IfyesthenwhatisHGF?

Commented by prakash jain last updated on 27/Sep/16

∠AHF=(π/2)=90°  if ∠AHB=∠BHD=∠DHF  then ∠AHB=∠BHD=∠DHF=(π/6)=30°    BG=r−((2r)/3)=(r/3)=GD  Let us say ∠BHG=x⇒∠GHD=(π/6)−x  △HBG,∠HGB=π−α  ∠HBG=π−x−(π−α)=α−x  ((HG)/(sin (α−x)))=((BG)/(sin x))  △GHD  ∠HGD=α  ∠GHD=(π/6)−x  ∠HDG=π−α−((π/6)−x)=((5π)/6)+x−α  ((HG)/(sin (((5π)/6)+x−α)))=((GD)/(sin ((π/6)−x)))=((BG)/(sin ((π/6)−x)))  ((sin x)/(∣sin (α−x)∣))=((sin ((π/6)−x))/(∣sin (((5π)/6)+x−α)∣))  △HAD  ∠HAD=π−(π/3)−(((5π)/6)+x−α)=α−x−(π/6)  △HAB  ((HB)/(sin (α−x−(π/6))))=((AB)/(sin (π/6)))  △HBD  ((BD)/(sin (π/6)))=((HB)/(sin (((5π)/6)+x−α)))  AB=BD⇒α−x−(π/6)=((5π)/6)+x−α  2α−2x=π⇒α=(π/2)+x  ((sin x)/(∣sin ((π/2)+x−x)∣))=((sin ((π/6)−x))/(∣sin (((5π)/6)−(π/2))∣))  sin x∙∣sin((π/3))∣=sin ((π/6)−x)  ((√3)/2)sin x=sin ((π/6)−x)  ((√3)/2)sin x=(1/2)cos x−((√3)/2)sin x  tan x=2(√3)  x=tan^(−1) 2(√3)  α=(π/2)+tan^(−1) 2(√3)  Please check.

AHF=π2=90°ifAHB=BHD=DHFthenAHB=BHD=DHF=π6=30°BG=r2r3=r3=GDLetussayBHG=xGHD=π6xHBG,HGB=παHBG=πx(πα)=αxHGsin(αx)=BGsinxGHDHGD=αGHD=π6xHDG=πα(π6x)=5π6+xαHGsin(5π6+xα)=GDsin(π6x)=BGsin(π6x)sinxsin(αx)=sin(π6x)sin(5π6+xα)HADHAD=ππ3(5π6+xα)=αxπ6HABHBsin(αxπ6)=ABsinπ6HBDBDsinπ6=HBsin(5π6+xα)AB=BDαxπ6=5π6+xα2α2x=πα=π2+xsinxsin(π2+xx)=sin(π6x)sin(5π6π2)sinxsin(π3)∣=sin(π6x)32sinx=sin(π6x)32sinx=12cosx32sinxtanx=23x=tan123α=π2+tan123Pleasecheck.

Commented by Rasheed Soomro last updated on 27/Sep/16

GREAT  approach !!!  I didn′t understand some lines:  △GHD  ⋮  ∠HDG=π−α−((π/6)−x)=((5π)/6)+x−α  ((HG)/(sin (((5π)/6)+^(?) α−^(?) x)))=((GD)/(sin ((π/6)−x)))=((BG)/(sin ((π/6)−x)))    .....  ...

GREATapproach!!!Ididntunderstandsomelines:GHDHDG=πα(π6x)=5π6+xαHGsin(5π6+?α?x)=GDsin(π6x)=BGsin(π6x)........

Commented by prakash jain last updated on 27/Sep/16

Yes. My mistake. I will correct.

Yes.Mymistake.Iwillcorrect.

Answered by prakash jain last updated on 02/Oct/16

In comments.

Incomments.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com