Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 79520 by TawaTawa last updated on 25/Jan/20

Commented by mathmax by abdo last updated on 26/Jan/20

Ω =∫_0 ^(2/5)  ((cos^2 x)/(cos^2 (x−(1/5))))dx =∫_0 ^(2/5)  ((1+cos(2x))/(1+cos(2x−(2/5))))dx  =_(2x=t)     (1/2) ∫_0 ^(4/5)  ((1+cost)/(1+cos(t−(2/5))))dt =_(t−(2/5)=u)  (1/2)∫_(−(2/5)) ^(2/5)  ((1+cos(u+(2/5)))/(1+cosu))du  ⇒2Ω =∫_(−(2/5)) ^(2/5)  ((1+cos((2/5))cosu −sin((2/5))sinu)/(1+cosu)) du  =∫_(−(2/5)) ^(2/5)  (du/(1+cosu)) +cos((2/5))∫_(−(2/5)) ^(2/5)  ((cosu)/(1+cosu))du−sin((2/5))∫_(−(2/5)) ^(2/5)  ((sinu)/(1+codu))du(→0)  Ω= ∫_0 ^(2/5)  (du/(1+cosu))  +cos((2/5))∫_0 ^(2/(5 ))  ((cosu)/(1+cosu))du  ∫_0 ^(2/(5 ))  (du/(1+cosu))du =_(tan((u/2))=z)    ∫_0 ^(tan((1/5)))  (1/(1+((1−z^2 )/(1+z^2 ))))×((2dz)/(1+z^2 ))  =2 ∫_0 ^(tan((1/5)))  (dz/(1+z^2  +1−z^2 )) =tan((1/5))  ∫_0 ^(2/5)  ((cosu)/(1+cosu))du =∫_0 ^(2/5)  ((1+cosu−1)/(1+cosu))du =(2/5) −tan((1/5)) ⇒  Ω =tan((1/5))+cos((2/5))((2/5) −tan((1/5)))

Ω=025cos2xcos2(x15)dx=0251+cos(2x)1+cos(2x25)dx=2x=t120451+cost1+cos(t25)dt=t25=u1225251+cos(u+25)1+cosudu2Ω=25251+cos(25)cosusin(25)sinu1+cosudu=2525du1+cosu+cos(25)2525cosu1+cosudusin(25)2525sinu1+codudu(0)Ω=025du1+cosu+cos(25)025cosu1+cosudu025du1+cosudu=tan(u2)=z0tan(15)11+1z21+z2×2dz1+z2=20tan(15)dz1+z2+1z2=tan(15)025cosu1+cosudu=0251+cosu11+cosudu=25tan(15)Ω=tan(15)+cos(25)(25tan(15))

Commented by TawaTawa last updated on 26/Jan/20

God bless you sir

Godblessyousir

Answered by MJS last updated on 25/Jan/20

∫((cos^2  x)/(cos^2  (x−(1/5))))dx=       [t=x−(1/5) → dx=dt]  ∫((cos^2  (t+(1/5)))/(cos^2  t))dt=  =((1+cos (2/5))/2)∫dt−sin (2/5)∫tan t dt+((1−cos (2/5))/2)∫tan^2  t dt=  and these are easy to solve

cos2xcos2(x15)dx=[t=x15dx=dt]cos2(t+15)cos2tdt==1+cos252dtsin25tantdt+1cos252tan2tdt=andtheseareeasytosolve

Terms of Service

Privacy Policy

Contact: info@tinkutara.com