All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 79520 by TawaTawa last updated on 25/Jan/20
Commented by mathmax by abdo last updated on 26/Jan/20
Ω=∫025cos2xcos2(x−15)dx=∫0251+cos(2x)1+cos(2x−25)dx=2x=t12∫0451+cost1+cos(t−25)dt=t−25=u12∫−25251+cos(u+25)1+cosudu⇒2Ω=∫−25251+cos(25)cosu−sin(25)sinu1+cosudu=∫−2525du1+cosu+cos(25)∫−2525cosu1+cosudu−sin(25)∫−2525sinu1+codudu(→0)Ω=∫025du1+cosu+cos(25)∫025cosu1+cosudu∫025du1+cosudu=tan(u2)=z∫0tan(15)11+1−z21+z2×2dz1+z2=2∫0tan(15)dz1+z2+1−z2=tan(15)∫025cosu1+cosudu=∫0251+cosu−11+cosudu=25−tan(15)⇒Ω=tan(15)+cos(25)(25−tan(15))
Commented by TawaTawa last updated on 26/Jan/20
Godblessyousir
Answered by MJS last updated on 25/Jan/20
∫cos2xcos2(x−15)dx=[t=x−15→dx=dt]∫cos2(t+15)cos2tdt==1+cos252∫dt−sin25∫tantdt+1−cos252∫tan2tdt=andtheseareeasytosolve
Terms of Service
Privacy Policy
Contact: info@tinkutara.com