Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 80139 by M±th+et£s last updated on 31/Jan/20

Commented by M±th+et£s last updated on 31/Jan/20

[Q80131 Reposted]

[Q80131Reposted]

Commented by mr W last updated on 31/Jan/20

if something is ∞, you may not  treat it as a “normal”value, otherwise  we would get things like  1×∞=∞  2×∞=∞  ⇒1×∞=2×∞  ⇒((1×∞)/∞)=((2×∞)/∞)  ⇒1=2

ifsomethingis,youmaynottreatitasanormalvalue,otherwisewewouldgetthingslike1×=2×=1×=2×1×=2×1=2

Commented by MJS last updated on 31/Jan/20

try this:  (e^(1/e) )^((e^(1/e) )^((e^(1/e) )^(...) ) ) =?

trythis:(e1e)(e1e)(e1e)...=?

Commented by M±th+et£s last updated on 31/Jan/20

−j

j

Commented by Tony Lin last updated on 31/Jan/20

(e^(1/e) )^x =x  lnx−(x/e)=0  f(x)=lnx−(x/e)  f′(x)=(1/x)−(1/e)=0  ⇒x=e  f′′(x)=−(1/x^2 )<0  e is the maximum value 0  ∴(e^(1/e) )^((e^(1/e) )^(...) ) =e

(e1e)x=xlnxxe=0f(x)=lnxxef(x)=1x1e=0x=ef(x)=1x2<0eisthemaximumvalue0(e1e)(e1e)...=e

Commented by MJS last updated on 31/Jan/20

I claim for x>0:y=x^x^x^(...)   <∞ ⇔ x≤e^(1/e)

Iclaimforx>0:y=xxx...<xe1e

Answered by MJS last updated on 31/Jan/20

x=(e^(π/2) )^(...)   ln x =(π/2)x ⇔ (π/2)x−ln x =0  f(x)=(π/2)x−ln x  f′(x)=0 ⇒ x=(2/π)  f′′((2/π))>0 ⇒ absolute minimum at  (((2/π)),((1+ln (π/2))) )  ⇒ no zero ⇒ no solution

x=(eπ2)...lnx=π2xπ2xlnx=0f(x)=π2xlnxf(x)=0x=2πf(2π)>0absoluteminimumat(2π1+lnπ2)nozeronosolution

Terms of Service

Privacy Policy

Contact: info@tinkutara.com