Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 8073 by 314159 last updated on 29/Sep/16

Commented by 123456 last updated on 30/Sep/16

cosh(x)=((e^x +e^(−x) )/2)  x^4 +x^(−4) =47  x=e^t   e^(4t) +e^(−4t) =47  2∙((e^(4t) +e^(−4t) )/2)=47  2cosh(4t)=47  t=((argcosh(((47)/2)))/4)  x^3 +x^(−3) =2∙((e^(3t) +e^(−3t) )/2)=2cosh(3t)  =2cosh(((3argcosh(((47)/2)))/4))

cosh(x)=ex+ex2x4+x4=47x=ete4t+e4t=472e4t+e4t2=472cosh(4t)=47t=argcosh(472)4x3+x3=2e3t+e3t2=2cosh(3t)=2cosh(3argcosh(472)4)

Commented by Rasheed Soomro last updated on 30/Sep/16

Appreciations for this novel approach!  Can we obtain the answer in more simplified form?

Appreciationsforthisnovelapproach!Canweobtaintheanswerinmoresimplifiedform?

Commented by prakash jain last updated on 30/Sep/16

This gives only one solution.  x^4 +(1/x^4 ) gives 8 solutions which are be  α,β,γ,θ,(1/α),(1/β),(1/γ),(1/θ)  effectively we get 4 solutions for x^3 +(1/x^3 )  as given in Rasheed′s Answer? How do  we get same 4 answer using above approach?  Actual calculation of the value gives 18.

Thisgivesonlyonesolution.x4+1x4gives8solutionswhicharebeα,β,γ,θ,1α,1β,1γ,1θeffectivelyweget4solutionsforx3+1x3asgiveninRasheedsAnswer?Howdowegetsame4answerusingaboveapproach?Actualcalculationofthevaluegives18.

Commented by 123456 last updated on 30/Sep/16

y=cosh(t)=((e^t +e^(−t) )/2)  x=e^t   2y=x+(1/x)  2xy=x^2 +1  x^2 −2xy+1=0  Δ=4y^2 −4=4(y^2 −1)  x=y±(√(y^2 −1))    (x≥0)  e^t =y+(√(y^2 −1))  t=ln(y+(√(y^2 −1)))  argcosh(t)=ln(t+(√(t^2 −1)))

y=cosh(t)=et+et2x=et2y=x+1x2xy=x2+1x22xy+1=0Δ=4y24=4(y21)x=y±y21(x0)et=y+y21t=ln(y+y21)argcosh(t)=ln(t+t21)

Commented by 123456 last updated on 30/Sep/16

we lost some roots  y=x^2 ⇒x=±(√y)  also  cos(x+2πk)=cos(x)  cosh(xi)=cos(x)  so cosh are periodic too, but the period  is 2πi

welostsomerootsy=x2x=±yalsocos(x+2πk)=cos(x)cosh(xi)=cos(x)socoshareperiodictoo,buttheperiodis2πi

Commented by prakash jain last updated on 30/Sep/16

Thanks. I understand now.  2cosh(4t)=47  Will give 4t=2inπ±cosh^(−1) (47/2)  So we get 8 solution for t for n=0,1,2,3

Thanks.Iunderstandnow.2cosh(4t)=47Willgive4t=2inπ±cosh1(47/2)Soweget8solutionfortforn=0,1,2,3

Answered by Rasheed Soomro last updated on 29/Sep/16

x^4 +(1/x^4 )=47 , x^3 +(1/x^3 )=?  x^4 +(1/x^4 )=47  x^4 +2+(1/x^4 )=47+2  (x^2 )^2 +2(x^2 )((1/x^2 ))+((1/x^2 ))=49  (x^2 +(1/x^2 ))^2 =(±7)^2   x^2 +(1/x^2 )=7 ∣ x^2 +(1/x^2 )=−7  x^2 +2+(1/x^2 )=7+2 ∣ x^2 +2+(1/x^2 )=−7+2  (x)^2 +2(x)((1/x))+((1/x))^2 =9 ∣ (x)^2 +2(x)((1/x))+((1/x))^2 =−5  (x+(1/x))^2 =(±3)^2  ∣  (x+(1/x))^2 =(±(√5) i)^2    x+(1/x)= ±3  ∣  x+(1/x)= ±(√5) i     (x+(1/x))^3 = (±3)^3   ∣  (x+(1/x))^3 = (±(√5) i)^3   x^3 +(1/x^3 )+3(x+(1/x))=(±3)^2 (±3) ∣ x^3 +(1/x^3 )+3(x+(1/x))=(±(√5) i)^2 (±(√5) i)  x^3 +(1/x^3 )+3(±3)=(9)(±3) ∣ x^3 +(1/x^3 )+3(±(√5) i)=(−5)(±(√5) i)  x^3 +(1/x^3 )=(9)(±3)−3(±3) ∣ x^3 +(1/x^3 )=(−5)(±(√5) i)−3(±(√5) i)  x^3 +(1/x^3 )=(9−3)(±3) ∣ x^3 +(1/x^3 )=(−5−3)(±(√5) i)  x^3 +(1/x^3 )=6(±3) ∣ x^3 +(1/x^3 )=−8(±(√5) i)  x^3 +(1/x^3 )=±18 ∣ x^3 +(1/x^3 )=∓8(√5) i  x^3 +(1/x^3 )=18 , −18 , −8(√5) i , 8(√5) i

x4+1x4=47,x3+1x3=?x4+1x4=47x4+2+1x4=47+2(x2)2+2(x2)(1x2)+(1x2)=49(x2+1x2)2=(±7)2x2+1x2=7x2+1x2=7x2+2+1x2=7+2x2+2+1x2=7+2(x)2+2(x)(1x)+(1x)2=9(x)2+2(x)(1x)+(1x)2=5(x+1x)2=(±3)2(x+1x)2=(±5i)2x+1x=±3x+1x=±5i(x+1x)3=(±3)3(x+1x)3=(±5i)3x3+1x3+3(x+1x)=(±3)2(±3)x3+1x3+3(x+1x)=(±5i)2(±5i)x3+1x3+3(±3)=(9)(±3)x3+1x3+3(±5i)=(5)(±5i)x3+1x3=(9)(±3)3(±3)x3+1x3=(5)(±5i)3(±5i)x3+1x3=(93)(±3)x3+1x3=(53)(±5i)x3+1x3=6(±3)x3+1x3=8(±5i)x3+1x3=±18x3+1x3=85ix3+1x3=18,18,85i,85i

Answered by prof.kerdus last updated on 29/Sep/16

its 18  •⌣•

its18

Answered by Rasheed Soomro last updated on 30/Sep/16

Another approach_(−)   x^4 +(1/x^4 )=47 , x^3 +(1/x^3 )=?  (x^4 +(1/x^4 ))^3 =(47)^3   (a+(1/a))^3 =a^3 +(1/a^3 )+3(a+(1/a))  (x^4 )^3 +((1/x^4 ))^3 +3(x^4 +(1/x^4 ))=103823  x^(12) +(1/x^(12) )+3(47)=103823  x^(12) +(1/x^(12) )=103823−141=103682    (x^6 )^2 +((1/x^6 ))^2 =103682  (x^6 )^2 +2+((1/x^6 ))^2 =103682+2  (x^6 )^2 +2(x^6 )((1/x^6 ))+((1/x^6 ))^2 =103684  (x^6 +(1/x^6 ))^2 =(±322)^2   x^6 +(1/x^6 )=±322  x^6 +2+(1/x^6 )=±322+2   (x^3 )^2 +2(x^3 )((1/x^3 ))+((1/x^3 ))^2 =324 , −320  (x^3 +(1/x^3 ))^2 =(±18)^(2  ) ∣  (x^3 +(1/x^3 ))^2 =(±8(√5) i)^2   x^3 +(1/x^3 )=±18  ∣  x^3 +(1/x^3 )=±8(√5) i  x^3 +(1/x^3 )=18, −18, 8(√5) i, −8(√5) i

Anotherapproachx4+1x4=47,x3+1x3=?(x4+1x4)3=(47)3(a+1a)3=a3+1a3+3(a+1a)(x4)3+(1x4)3+3(x4+1x4)=103823x12+1x12+3(47)=103823x12+1x12=103823141=103682(x6)2+(1x6)2=103682(x6)2+2+(1x6)2=103682+2(x6)2+2(x6)(1x6)+(1x6)2=103684(x6+1x6)2=(±322)2x6+1x6=±322x6+2+1x6=±322+2(x3)2+2(x3)(1x3)+(1x3)2=324,320(x3+1x3)2=(±18)2(x3+1x3)2=(±85i)2x3+1x3=±18x3+1x3=±85ix3+1x3=18,18,85i,85i

Answered by Rasheed Soomro last updated on 30/Sep/16

Slightly   defferent version  of my answer  dated 29/9/16  x^4 +(1/x^4 )=47, x^3 +(1/x^3 )=?  Let  x+(1/x)=y            ( x+(1/x))^2 =y^2              x^2 +(1/x^2 )=y^2 −2             (x^2 +(1/x^2 ))^2 =(y^2 −2)^2            x^4 +(1/x^4 )=(y^2 −2)^2 −2=47          (y^2 −2)^2 =47+2=49          (y^2 −2)^2 =(±7)^2             y^2 −2=±7           y^2 =±7+2           y^2 =7+2 , −7+2          y^2 =(±3)^2    ∣    y^2 =(±(√(−5)) )^2         y=3,−3         ∣    y=(√5) i ,−(√5) i  x+(1/x)=3 , −3 , (√5) i , −(√5) i  For remaining process see my answer dated 29/09/16

Slightlydefferentversionofmyanswerdated29/9/16x4+1x4=47,x3+1x3=?Letx+1x=y(x+1x)2=y2x2+1x2=y22(x2+1x2)2=(y22)2x4+1x4=(y22)22=47(y22)2=47+2=49(y22)2=(±7)2y22=±7y2=±7+2y2=7+2,7+2y2=(±3)2y2=(±5)2y=3,3y=5i,5ix+1x=3,3,5i,5iForremainingprocessseemyanswerdated29/09/16

Terms of Service

Privacy Policy

Contact: info@tinkutara.com