Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 80786 by M±th+et£s last updated on 06/Feb/20

Commented by mind is power last updated on 06/Feb/20

i will try not easy !

iwilltrynoteasy!

Commented by mr W last updated on 06/Feb/20

i think it′s zero due to symmetry.  S_k =Σ_(m=1) ^k Σ_(n=1_(n≠m) ) ^k (1/(m^2 −n^2 ))=0  since for a pair (m=i and n=j) there  is a corresponding pair (m=j and  n=i):  (1/(i^2 −j^2 ))+(1/(j^2 −i^2 ))=0    S=Σ_(m=1) ^∞ Σ_(n=1_(n≠m) ) ^∞ (1/(m^2 −n^2 ))=lim_(k→∞) S_k =0

ithinkitszeroduetosymmetry.Sk=km=1kn=1nm1m2n2=0sinceforapair(m=iandn=j)thereisacorrespondingpair(m=jandn=i):1i2j2+1j2i2=0S=m=1n=1nm1m2n2=limkSk=0

Commented by mr W last updated on 06/Feb/20

the question can be modified to  S=Σ_(m=1) ^∞ Σ_(n=1) ^∞ (1/(m^2 +n^2 ))=?

thequestioncanbemodifiedtoS=m=1n=11m2+n2=?

Commented by mathmax by abdo last updated on 06/Feb/20

try to prove that Σ_(n=1    n≠m) ^∞   (1/(n^2 −m^2 )) =(3/(4m^2 ))

trytoprovethatn=1nm1n2m2=34m2

Commented by ~blr237~ last updated on 07/Feb/20

let h(m)=Σ_(n∈N)  (1/(m^2 +n^2 ))   let state f(z)=(1/(m^2 +z^2 )) , using the Residu theorem  h(m)=−ΣRes(f(z)πcot(πz),z_k )   h(m)=−( ((πcot(iπm))/(2im)) +((πcot(−iπm))/(−2im)))  h(m)=iπ((cot(iπm))/m) =((πcoth(πm))/m)   So  , S=Σ_(m=1) ^∞  ((1/m^2 ) +((πcoth(πm))/(2m)))  S=ζ(2)+(π/2)Σ_(m=1) ^∞  ((coth(πm))/m)

leth(m)=nN1m2+n2letstatef(z)=1m2+z2,usingtheResidutheoremh(m)=ΣRes(f(z)πcot(πz),zk)h(m)=(πcot(iπm)2im+πcot(iπm)2im)h(m)=iπcot(iπm)m=πcoth(πm)mSo,S=m=1(1m2+πcoth(πm)2m)S=ζ(2)+π2m=1coth(πm)m

Answered by ~blr237~ last updated on 07/Feb/20

We have ∀ m≥2    Σ_(n=_(n≠m) 1) ^∞   (1/(m^2 −n^2 )) =− (3/(4m^2 ))     (let prove)   f(m)=Σ_(n=1  n≠m) ^∞  (1/(m^2 −n^2 ))   .  knowing (1/(m^2 −n^2 )) =−(1/(2m))((1/(n−m))−(1/(n+m)))    f(m)= −(1/(2m)) [Σ_(n=1) ^(m−1) ((1/(n−m))−(1/(n+m)))+Σ_(n=m+1) ^∞ ((1/(n−m))−(1/(n+m)))]  f(m)=(1/(2m))[ Σ_(p=m+1) ^(2m−1) (1/p) +Σ_(p=1) ^(m−1) (1/p)]−(1/(2m))[Σ_(p=1) ^∞ ((1/p)−(1/(p+2m)))]    let show that  g(m)=Σ_(p=1) ^∞ ((1/p)−(1/(p+m)))=Σ_(p=1) ^m (1/p)  g(m)=Σ_(p=1) ^∞ (Σ_(k=0) ^(m−1) ((1/(p+k))−(1/(p+k+1))))            =Σ_(k=0) ^(m−1) (Σ_(p=1) ^∞ ((1/(k+p))−(1/(k+p+1))))           =Σ_(k=0) ^(m−1) (1/(k+1))=Σ_(k=1) ^m  (1/k)   So ,  f(m)=(1/(2m))(Σ_(p=1) ^(2m−1) (1/p) −(1/m))−(1/(2m))Σ_(p=1) ^(2m) (1/p)   f(m)=−(1/(2m^2 )) −(1/(2m))×(1/(2m)) =−(3/(4m^2 ))   Finally  S=Σ_(m=1) ^∞ f(m)=−(3/4)ζ(2)=−(π^2 /8)

Wehavem2n=nm11m2n2=34m2(letprove)f(m)=n=1nm1m2n2.knowing1m2n2=12m(1nm1n+m)f(m)=12m[m1n=1(1nm1n+m)+n=m+1(1nm1n+m)]f(m)=12m[2m1p=m+11p+m1p=11p]12m[p=1(1p1p+2m)]letshowthatg(m)=p=1(1p1p+m)=mp=11pg(m)=p=1(m1k=0(1p+k1p+k+1))=m1k=0(p=1(1k+p1k+p+1))=m1k=01k+1=mk=11kSo,f(m)=12m(2m1p=11p1m)12m2mp=11pf(m)=12m212m×12m=34m2FinallyS=m=1f(m)=34ζ(2)=π28

Commented by M±th+et£s last updated on 07/Feb/20

i think that it^′ s ((−π^2 )/8)

ithinkthatitsπ28

Commented by ~blr237~ last updated on 07/Feb/20

yes it′s

yesits

Commented by M±th+et£s last updated on 07/Feb/20

thank you sir briliant solution

thankyousirbriliantsolution

Terms of Service

Privacy Policy

Contact: info@tinkutara.com