All Questions Topic List
Arithmetic Questions
Previous in All Question Next in All Question
Previous in Arithmetic Next in Arithmetic
Question Number 8252 by 8168 last updated on 04/Oct/16
Answered by Yozzias last updated on 04/Oct/16
6+4+83+169+...=6+(2230+2331+2432+...+2n+13n−1+...)=6+∑∞n=12n+13n−1=6+23−1∑∞n=1(23)n=6+6×2/31−23=6+6×2/31/36+4+83+169+...=18Thesumisconvergentandhenceboundedandmonotone.Fors(n)=6+6∑nr=1(23)r⇒s(n+1)−s(n)=6(23)n+1>0⇒s(n+1)>s(n)⇒s(n)isanincreasingsequenceofpartialsums.Sinces(n)isincreasingandlimsn→∞(n)=18thens(n)isboundedaboveands(n)⩽18∀n∈N.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com