Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 8259 by 314159 last updated on 04/Oct/16

Answered by Yozzias last updated on 04/Oct/16

Let u(x)=(1+x)^n   (n∈N,n≥2)  2^n −1=C_1 +C_2 +C_3 +C_4 +...+C_n   (2^n −1)^(1/2) =(C_1 +C_2 +C_3 +C_4 +...+C_n )^(1/2)   The Root Mean Square Inequality  states that for x_i >0 (i=1,2,3,...,n),                (√((Σ_(i=1) ^n x_i ^2 )/n))≥((Σ_(i=1) ^n x_i )/n).  Let x_i =(√C_i ) .                (√((Σ_(i=1) ^n ((√C_i ))^2 )/n))≥((Σ_(i=1) ^n (√C_i ))/n)  (((C_1 +C_2 +C_3 +...+C_n )/n))^(1/2) ≥(((√C_1 )+(√C_2 )+(√C_3 )+...+(√C_n ))/n)  ×n⇒(n(C_1 +C_2 +C_3 +...+C_n ))^(1/2) ≥(√C_1 )+(√C_2 )+(√C_3 )+...+(√C_n )  But (2^n −1)^(1/2) =(C_1 +C_2 +C_3 +C_4 +...+C_n )^(1/2) .  ∴ (n(2^n −1))^(1/2) ≥(√C_1 )+(√C_2 )+(√C_3 )+...+(√C_n ).

Letu(x)=(1+x)n(nN,n2)2n1=C1+C2+C3+C4+...+Cn(2n1)1/2=(C1+C2+C3+C4+...+Cn)1/2TheRootMeanSquareInequalitystatesthatforxi>0(i=1,2,3,...,n),ni=1xi2nni=1xin.Letxi=Ci.ni=1(Ci)2nni=1Cin(C1+C2+C3+...+Cnn)1/2C1+C2+C3+...+Cnn×n(n(C1+C2+C3+...+Cn))1/2C1+C2+C3+...+CnBut(2n1)1/2=(C1+C2+C3+C4+...+Cn)1/2.(n(2n1))1/2C1+C2+C3+...+Cn.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com