Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 82873 by mr W last updated on 25/Feb/20

Commented by mr W last updated on 25/Feb/20

A rope with length l and mass m is  fixed at one end on the top of a roller  with diameter h as shown. Find the  maximal possible horizontal distance  b from the free end to the fixed end,  if the friction coefficient between  the rope and the ground is 𝛍.

Aropewithlengthlandmassmisfixedatoneendonthetopofarollerwithdiameterhasshown.Findthemaximalpossiblehorizontaldistancebfromthefreeendtothefixedend,ifthefrictioncoefficientbetweentheropeandthegroundisμ.

Commented by jagoll last updated on 25/Feb/20

waw phisic

wawphisic

Answered by mr W last updated on 25/Feb/20

Commented by mr W last updated on 27/Feb/20

let ρ=(m/l)  the free end B is right most when  the max. friction between rope and  ground is activated.    tension in rope at poind D is T_0  with  T_0 =μρdg  let a=(T_0 /(ρg))=μd    the rope is divided into 3 parts:  arc AC=((hθ)/2)  free hanging segment CD=s  segment on ground DB=d  l=((hθ)/2)+s+d ⇒s=l−((hθ)/2)−d    in the xy−coordinate system the  shape of the hanging segment is a  catenary with equation  y=a cosh (x/a)  y′=sinh (x/a)    at point C:  x_C =c=b−d−((h sin θ)/2)   ...(i)  y_C =a+(h/2)(1+cos θ)=a cosh (c/a)   ...(ii)  y_D ′=tan θ=sinh (c/a)   ...(iii)  s=l−d−((hθ)/2)=a sinh (c/a)   ...(iv)  from (iii) and (iv):  l−d−((hθ)/2)=μd tan θ  ⇒d=((2l−hθ)/(2(1+μ tan θ)))  (ii)^2 −(iii×a)^2 :  a^2 +ah(1+cos θ)+((h^2 (1+cos θ)^2 )/4)−a^2 tan^2  θ=a^2   tan^2  θ a^2 −h(1+cos θ)a−((h^2 (1+cos θ)^2 )/4)=0  ⇒a=μd=((h cos θ (1+cos θ))/(2(1−cos θ)))  ⇒((μ(2l−hθ))/(cos θ+μ sin θ))=((h(1+cos θ))/(1−cos θ))  let η=(l/h)  ⇒((μ(2η−θ))/(cos θ+μ sin θ))=((1+cos θ)/(1−cos θ))    ...(I)    from(iii):  c=a sinh^(−1)  (tan θ)=μd  sinh^(−1)  (tan θ)  from (i):  b=c+d+((h sin θ)/2)  b=((h cos θ (1+cos θ)[1+μ sinh^(−1)  (tan θ)])/(2μ(1−cos θ)))+((h sin θ)/2)  ⇒((2b)/h)=((cos θ (1+cos θ)[1+μ sinh^(−1)  (tan θ)])/(μ(1−cos θ)))+sin θ   ...(II)  we get θ from (I) and then b from (II).     example:  l=10m,h=2m, η=(l/h)=((10)/2)=5, μ=0.5  ⇒θ≈0.8840 (50.65°)  ⇒((2b)/h)≈9.3479 ⇒b≈9.3479 m    (h/l)=(2/(θ+(((1+cos θ)(cos θ+μ sin θ))/(μ(1−cos θ)))))   (b/l)=(h/(2l)){((cos θ (1+cos θ)[1+μ sinh^(−1)  (tan θ)])/(μ(1−cos θ)))+sin θ}  using θ as parameter we can get the  relation between (b/l) and (h/l), see   diagram.

letρ=mlthefreeendBisrightmostwhenthemax.frictionbetweenropeandgroundisactivated.tensioninropeatpoindDisT0withT0=μρdgleta=T0ρg=μdtheropeisdividedinto3parts:arcAC=hθ2freehangingsegmentCD=ssegmentongroundDB=dl=hθ2+s+ds=lhθ2dinthexycoordinatesystemtheshapeofthehangingsegmentisacatenarywithequationy=acoshxay=sinhxaatpointC:xC=c=bdhsinθ2...(i)yC=a+h2(1+cosθ)=acoshca...(ii)yD=tanθ=sinhca...(iii)s=ldhθ2=asinhca...(iv)from(iii)and(iv):ldhθ2=μdtanθd=2lhθ2(1+μtanθ)(ii)2(iii×a)2:a2+ah(1+cosθ)+h2(1+cosθ)24a2tan2θ=a2tan2θa2h(1+cosθ)ah2(1+cosθ)24=0a=μd=hcosθ(1+cosθ)2(1cosθ)μ(2lhθ)cosθ+μsinθ=h(1+cosθ)1cosθletη=lhμ(2ηθ)cosθ+μsinθ=1+cosθ1cosθ...(I)from(iii):c=asinh1(tanθ)=μdsinh1(tanθ)from(i):b=c+d+hsinθ2b=hcosθ(1+cosθ)[1+μsinh1(tanθ)]2μ(1cosθ)+hsinθ22bh=cosθ(1+cosθ)[1+μsinh1(tanθ)]μ(1cosθ)+sinθ...(II)wegetθfrom(I)andthenbfrom(II).example:l=10m,h=2m,η=lh=102=5,μ=0.5θ0.8840(50.65°)2bh9.3479b9.3479mhl=2θ+(1+cosθ)(cosθ+μsinθ)μ(1cosθ)bl=h2l{cosθ(1+cosθ)[1+μsinh1(tanθ)]μ(1cosθ)+sinθ}usingθasparameterwecangettherelationbetweenblandhl,seediagram.

Commented by mr W last updated on 26/Feb/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com