Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 83063 by M±th+et£s last updated on 27/Feb/20

Commented by M±th+et£s last updated on 27/Feb/20

thank you sir

thankyousir

Commented by abdomathmax last updated on 27/Feb/20

let decompose F(x)=(1/(x(x+1)....(x+m)))  =(1/(Π_(k=0) ^m (x+k))) ⇒F(x)=Σ_(k=0) ^m  (a_k /(x+k))  a_k =lim_(x→−k)  (x+k)F(x)  we hsve F(x)=(1/(x(x+1)...(x+k−1)(x+k)(x+k+1)...(x+m)))  ⇒a_k =(1/((−k)(−k+1)....(−k+k−1)(−k+k+1)...(−k+m)))  =(1/((−1)^k k!(m−k)!)) =(((−1)^k )/(k!(m−k)!)) ⇒  F(x)=Σ_(k=0) ^m  (((−1)^k )/(k!(m−k)!(x+k))) ⇒  ∫ F(x)dx =Σ_(k=0) ^m  (((−1)^k )/(k!(m−k)!))ln∣x+k∣ +C

letdecomposeF(x)=1x(x+1)....(x+m)=1k=0m(x+k)F(x)=k=0makx+kak=limxk(x+k)F(x)wehsveF(x)=1x(x+1)...(x+k1)(x+k)(x+k+1)...(x+m)ak=1(k)(k+1)....(k+k1)(k+k+1)...(k+m)=1(1)kk!(mk)!=(1)kk!(mk)!F(x)=k=0m(1)kk!(mk)!(x+k)F(x)dx=k=0m(1)kk!(mk)!lnx+k+C

Commented by mathmax by abdo last updated on 27/Feb/20

you are welcome

youarewelcome

Answered by mind is power last updated on 27/Feb/20

(1/(Π_(k=0) ^m (x+k)))Σ_(j=0) ^m (a_j /(x+j))  a_j =(1/(Π_(k=0,k≠j) ^m (k−j)))=(1/(Π_(k=0) ^(j−1) (k−j).Π_(j+1) ^m (k−j)))=(((−1)^j )/(j!.(m−j)!))=a_j   =Σ_(j=0) ^m (((−1)^j )/(j!(m−j)!)).(1/(x+j))  ∫(dx/(Π_(k=0) ^m (x+k)))=∫Σ_(j=0) ^m (((−1)^j )/(j!(m−j)!)).(1/(x+j))dx=Σ_(j=0) ^m (((−1)^j )/(j!(m−j)!))∫(dx/(x+j))  =Σ_(j=0) ^m (((−1)^j )/(j!(m−j)!))ln(∣x+j∣)+c

1mk=0(x+k)mj=0ajx+jaj=1mk=0,kj(kj)=1j1k=0(kj).mj+1(kj)=(1)jj!.(mj)!=aj=mj=0(1)jj!(mj)!.1x+jdxmk=0(x+k)=mj=0(1)jj!(mj)!.1x+jdx=mj=0(1)jj!(mj)!dxx+j=mj=0(1)jj!(mj)!ln(x+j)+c

Commented by M±th+et£s last updated on 27/Feb/20

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com