All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 83543 by Power last updated on 03/Mar/20
Commented by john santu last updated on 03/Mar/20
let1+2x+3x2+4x3+5x4+...=f(x)∫f(x)dx=∫(1+2x+3x2+4x3+...)dx∫f(x)dx=x+x2+x3+x4+...∫f(x)dx=x1−x=x−x+1⇒f(x)=1(1−x)21(1−x)2=4936⇒(1−x)2=3649(1−x−67)(1−x+67)=0(17−x)(137−x)=0x={17137
Commented by Power last updated on 03/Mar/20
thanks
Answered by mr W last updated on 03/Mar/20
f(x)=1+2x+3x2+4x3+5x4+...xf(x)=x+2x2+3x3+4x4+...(1−x)f(x)=1+x+x2+x3+x4+...(1−x)f(x)=11−x,if∣x∣<1(1−x)f(x)=∞,if∣x∣⩾1with∣x∣<1:⇒f(x)=1(1−x)2=4936⇒11−x=±76⇒1−x=±67⇒x=1±67since∣x∣<1,thereisonlyonesolution:⇒x=17
Terms of Service
Privacy Policy
Contact: info@tinkutara.com