Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 83565 by Jidda28 last updated on 03/Mar/20

Commented by abdomathmax last updated on 04/Mar/20

I=∫_(−∞) ^(+∞)  (e^(2x) /(e^(3x)  +1))dx changement e^x =t give  I  =∫_0 ^(+∞)   (t^2 /(t^3  +1))×(dt/t) =∫_0 ^∞   ((tdt)/(t^3 +1))  let decompose F(t)=(t/(t^3  +1)) ⇒F(t)=(t/((t+1)(t^2 −t+1)))  =(a/(t+1)) +((bt +c)/(t^2 −t +1))  a=(t+1)F(t)∣_(t=−1) =((−1)/3)  lim_(t→+∞)  tF(t)=0=a+b ⇒b=(1/3)   F(0)=0=a+c ⇒c=(1/3)⇒F(t)=((−1)/(3(t+1))) +(1/3)((t+1)/(t^2 −t+1))  ⇒∫ F(t)dt =−(1/3)∫ (dt/(t+1)) +(1/6)∫ ((2t+2)/(t^2 −t+1))dt  =−(1/3)∫ (dt/(t+1)) +(1/6)∫ ((2t−1)/(t^2 −t+1))dt +(1/2)∫  (dt/(t^2 −t+1))  =−(1/3)ln∣t+1∣+(1/6)ln(t^2 −t+1)  +(1/2)∫  (dt/((t−(1/2))^2 +(3/4)))   (t−(1/2)=((√3)/2)u)  =ln((((t^2 −t+1)^(1/6) )/(∣t+1∣^(1/3) )))+(1/2)×(4/3)∫    (1/(u^2  +1))×((√3)/2)du  =ln(....)+(1/(√3)) arctan(((2t−1)/(√3))) ⇒  I =∫_0 ^∞  F(t)dt =[ln((((t^2 −t+1)^(1/6) )/((t+1)^(1/3) )))]_0 ^(+∞)   +(1/(√3))[arctan(((2t−1)/(√3)))]_0 ^(+∞)   =(1/(√3)){(π/2) +arctan((1/(√3)))} =(1/(√3)){ (π/2)+(π/6)}  =(1/(√3)){((4π)/6)} =((2π)/(3(√3)))

I=+e2xe3x+1dxchangementex=tgiveI=0+t2t3+1×dtt=0tdtt3+1letdecomposeF(t)=tt3+1F(t)=t(t+1)(t2t+1)=at+1+bt+ct2t+1a=(t+1)F(t)t=1=13limt+tF(t)=0=a+bb=13F(0)=0=a+cc=13F(t)=13(t+1)+13t+1t2t+1F(t)dt=13dtt+1+162t+2t2t+1dt=13dtt+1+162t1t2t+1dt+12dtt2t+1=13lnt+1+16ln(t2t+1)+12dt(t12)2+34(t12=32u)=ln((t2t+1)16t+113)+12×431u2+1×32du=ln(....)+13arctan(2t13)I=0F(t)dt=[ln((t2t+1)16(t+1)13)]0++13[arctan(2t13)]0+=13{π2+arctan(13)}=13{π2+π6}=13{4π6}=2π33

Commented by abdomathmax last updated on 04/Mar/20

⇒I =((2π(√3))/9)     (    error in the Q!...)

I=2π39(errorintheQ!...)

Commented by Jidda28 last updated on 04/Mar/20

thank you sir

thankyousir

Commented by msup trace by abdo last updated on 04/Mar/20

you are welcome

youarewelcome

Answered by mind is power last updated on 03/Mar/20

 i found just this near to gamma Ψ(x)=((Γ′(x))/(Γ(x)))     and ∫_0 ^(+∞) e^(−ax) dx=(1/a)∫_0 ^(+∞) x^(1−1) e^(−x) =((Γ(1))/a),lign (5→6)bellow  =∫_0 ^(+∞) (e^(−2x) /(1+e^(−3x) ))dx=∫_0 ^(+∞) (e^x /(1+e^(3x) ))dx  ⇒∫_(−∞) ^(+∞) (e^(2x) /(1+e^(3x) ))dx=∫_0 ^(+∞) (e^x /(1+e^(3x) ))dx+∫_0 ^(+∞) (e^(2x) /(1+e^(3x) ))  =∫_0 ^(+∞) (e^(−2x) /(e^(−3x) +1))dx+∫_0 ^(+∞) (e^(−x) /(1+e^(−3x) ))dx  =∫_0 ^(+∞) e^(−2x) {Σ_(k≥0) (−e^(−3x) )^k )dx+∫_0 ^(+∞) e^(−x) (Σ_(k≥0) (−e^(−3x) )^k )dx  =Σ_(k≥0) (−1)^k ∫_0 ^(+∞) (e^(−(3k+2)x) +e^(−(3k+1)x) )dx  =Σ_(k≥0) (((−1)^k )/(3k+2))+Σ_(k≥0) (((−1)^k )/(3k+1))    =Σ_(k≥0) ((1/(6k+2))−(1/(6k+5)))+Σ_(k≥0) ((1/(6k+1))−(1/(6k+4)))  =Σ_(k≥0) ((3/((6k+2)(6k+5))))+Σ_(k≥0) ((3/((6k+1)(6k+4))))  =(1/(12))Σ_(k≥0) ((1/((k+(2/6))(k+(5/6)))))+(1/(12))Σ_(k≥0) (1/((k+(1/6))(k+(4/6))))  =(1/(12))((Ψ((5/6))−Ψ((2/6)))/((5−2)/6))+(1/(12))((Ψ((4/6))−Ψ((1/6)))/((4−1)/6))  =(1/6)[Ψ((5/6))−Ψ((1/6))+Ψ((4/6))−Ψ((2/6))]  =(1/6)[−(π/2)cot(((5π)/6))+(π/2)cot((π/6))−(π/2)cot(((4π)/6))+(π/2)cot(((2π)/6))]  =(1/6)[πcot((π/6))+πcot((π/3))]  =(π/6)[(1/(√3))+(√3)]=(π/6).((4/(√3)))=((2π)/(3(√3)))=((2π(√3))/9)  2 nd way  =∫_0 ^(+∞) (e^x /(e^(3x) +1))dx+∫_0 ^(+∞) (e^(2x) /(1+e^(3x) ))dx=∫_0 ^(+∞) ((e^x (1+e^x )dx)/((e^x +1)(e^(2x) −e^x +1)))  =∫_0 ^(+∞) (e^x /(e^(2x) −e^x +1))dx  =∫_1 ^(+∞) (du/(u^2 −u+1))=∫_1 ^(+∞) (du/((u−(1/2))^2 +(3/4)))  =(2/(√3))[arctan(((2u)/(√3))−(1/(√3)))]_1 ^(+∞)   (2/(√3))[(π/2)−(π/6)]=((4π)/(6(√3)))=((2π(√3))/9)

ifoundjustthisneartogammaΨ(x)=Γ(x)Γ(x)and0+eaxdx=1a0+x11ex=Γ(1)a,lign(56)bellow=0+e2x1+e3xdx=0+ex1+e3xdx+e2x1+e3xdx=0+ex1+e3xdx+0+e2x1+e3x=0+e2xe3x+1dx+0+ex1+e3xdx=0+e2x{k0(e3x)k)dx+0+ex(k0(e3x)k)dx=k0(1)k0+(e(3k+2)x+e(3k+1)x)dx=k0(1)k3k+2+k0(1)k3k+1=k0(16k+216k+5)+k0(16k+116k+4)=k0(3(6k+2)(6k+5))+k0(3(6k+1)(6k+4))=112k0(1(k+26)(k+56))+112k01(k+16)(k+46)=112Ψ(56)Ψ(26)526+112Ψ(46)Ψ(16)416=16[Ψ(56)Ψ(16)+Ψ(46)Ψ(26)]=16[π2cot(5π6)+π2cot(π6)π2cot(4π6)+π2cot(2π6)]=16[πcot(π6)+πcot(π3)]=π6[13+3]=π6.(43)=2π33=2π392ndway=0+exe3x+1dx+0+e2x1+e3xdx=0+ex(1+ex)dx(ex+1)(e2xex+1)=0+exe2xex+1dx=1+duu2u+1=1+du(u12)2+34=23[arctan(2u313)]1+23[π2π6]=4π63=2π39

Commented by Jidda28 last updated on 04/Mar/20

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com