Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 83824 by Power last updated on 06/Mar/20

Commented by mathmax by abdo last updated on 06/Mar/20

changement x=(π/2)−t give  Ω =−∫_0 ^(π/2)  ((π((π/2)−t)+cos^4 t−sin^4 t)/(cos^4 t+sin^4 t))(−dt)  =(π^2 /2)∫_0 ^(π/2)   (dt/(cos^4 t+sin^4  tdt)) +∫_0 ^(π/2) ((−πt +cos^4 t−sin^4 t)/(cos^4 t +sin^4 t))dt  =(π^2 /2)∫_0 ^(π/2)  (dt/(cos^4 t +sin^4 t)) −Ω ⇒2Ω =(π^2 /2) ∫_0 ^(π/2)  (dt/(1−2cos^2 t sin^2 t)) ⇒  Ω =(π^2 /4)∫_0 ^(π/2)  (dt/(1−2(((sin(2t))/2))^2 )) =(π^2 /4)∫_0 ^(π/2)   (dt/(1−(1/2)sin^2 (2t)))  =(π^2 /2)∫_0 ^(π/2)  (dt/(2−((1−cos(4t))/2))) =π^2  ∫_0 ^(π/2)   (dt/(3+cos(4t)))  =_(4t =u)   π^2  ∫_0 ^(2π)   (1/(3+cosu))(du/4) =(π^2 /4) ∫_0 ^(2π)  (du/(3+cosu))  changement e^(iu) =z ⇒  ∫_0 ^(2π)  (du/(3+cosu)) =∫_(∣z∣=1)    (1/(3+((z+z^(−1) )/2)))(dz/(iz))  =∫_(∣z∣=1)    ((2dz)/(iz(6+z+z^(−1) ))) =∫_(∣z∣=1) ((−2idz)/(6z +z^2 +1))  let W(z)=((−2i)/(z^2 +6z +1))  poles of W?  Δ^′ =9−1 =8 ⇒z_1 =−3+2(√2)    and z_2 =−3−2(√2) ⇒W(z)=((−2i)/((z−z_1 )(z−z_2 )))  ∣z_1 ∣−1 =∣−3+2(√2)∣−1 =3−2(√2)−1 =2−2(√2)<0 ⇒∣z_1 ∣<1  ∣z_2 ∣ =3+2(√2)−1 =2+2(√2)>1  residus theorem give  ∫_(∣z∣=1) W(z)dz =2iπ Res(W,z_1 ) =2iπ×((−2i)/(z_1 −z_2 )) =((4π)/(4(√2))) =(π/(√2)) ⇒  Ω =(π^2 /4)×(π/(√2)) =(π^3 /(4(√2)))

changementx=π2tgiveΩ=0π2π(π2t)+cos4tsin4tcos4t+sin4t(dt)=π220π2dtcos4t+sin4tdt+0π2πt+cos4tsin4tcos4t+sin4tdt=π220π2dtcos4t+sin4tΩ2Ω=π220π2dt12cos2tsin2tΩ=π240π2dt12(sin(2t)2)2=π240π2dt112sin2(2t)=π220π2dt21cos(4t)2=π20π2dt3+cos(4t)=4t=uπ202π13+cosudu4=π2402πdu3+cosuchangementeiu=z02πdu3+cosu=z∣=113+z+z12dziz=z∣=12dziz(6+z+z1)=z∣=12idz6z+z2+1letW(z)=2iz2+6z+1polesofW?Δ=91=8z1=3+22andz2=322W(z)=2i(zz1)(zz2)z11=∣3+221=3221=222<0⇒∣z1∣<1z2=3+221=2+22>1residustheoremgivez∣=1W(z)dz=2iπRes(W,z1)=2iπ×2iz1z2=4π42=π2Ω=π24×π2=π342

Answered by TANMAY PANACEA last updated on 06/Mar/20

I=∫_0 ^(π/2) ((π((π/2)−x)+sin^4 ((π/2)−x)−cos^4 ((π/2)−x))/(sin^4 ((π/2)−x)+cos^4 ((π/2)−x)))dx  2I=∫_0 ^(π/2) ((π((π/2)))/(cos^4 x+sin^4 x))  2I=(π^2 /2)∫_0 ^(π/2) ((sec^2 x×(1+tan^2 x))/(1+tan^4 x))dx  I=(π^2 /4)∫_0 ^∞ ((1+t^2 )/(1+t^4 ))dt  [t=tanx]  I=(π^2 /4)∫_0 ^∞ ((1+(1/t^2 ))/(t^2 +(1/t^2 )))dt  =(π^2 /4)∫_0 ^∞ ((d(t−(1/t)))/((t−(1/t))^2 +2))  (π^2 /4)×(1/(√2))∣tan^(−1) (((t−(1/t))/(√2)))∣_0 ^∞   (π^2 /(4(√2)))×{(tan^(−1) ∞−tan^(−1) (−∞)}  (π^2 /(4(√2)))×((π/2)+(π/2))=(π^3 /(4(√2)))  pls check

I=0π2π(π2x)+sin4(π2x)cos4(π2x)sin4(π2x)+cos4(π2x)dx2I=0π2π(π2)cos4x+sin4x2I=π220π2sec2x×(1+tan2x)1+tan4xdxI=π2401+t21+t4dt[t=tanx]I=π2401+1t2t2+1t2dt=π240d(t1t)(t1t)2+2π24×12tan1(t1t2)0π242×{(tan1tan1()}π242×(π2+π2)=π342plscheck

Commented by mathmax by abdo last updated on 06/Mar/20

your answer is correct sir tanmay

youransweriscorrectsirtanmay

Commented by Power last updated on 06/Mar/20

thanks

thanks

Commented by TANMAY PANACEA last updated on 06/Mar/20

thank you both of you sir

thankyoubothofyousir

Answered by Kamel Kamel last updated on 07/Mar/20

Put t=(π/2)−x  ∴ Ω=∫_0 ^(π/2) (((π^2 /2)−πt+cos^4 (t)−sin^4 (t))/(cos^4 (t)+sin^4 (t)))dx  ∴ 2Ω=(π^2 /2)∫_0 ^(π/2) (dx/(cos^4 (x)+sin^4 (x)))=(π^2 /2)∫_0 ^(π/2)   (dx/(1−2sin^2 (x)cos^2 (x)))             =2π^2 ∫_0 ^(π/2) (dx/(2−sin^2 (2x)))=^(t=2x) π^2 ∫_0 ^π (dt/(2−sin^2 (t)))=2π^2 ∫_0 ^π (dt/(cos(2t)+3))          =^(u=2t) π^2 ∫_0 ^(2π) (du/(cos(u)+3))=π^2 ∫_(−π) ^π (du/(cos(u)+3))=^(v=tg((u/2))     2π^2 ∫_(−∞) ^(+∞) (dv/(1−v^2 +3+3v^2 ))            =2π^2 ∫_0 ^(+∞) (dv/(v^2 +2))=(π^2 /(√2))Arctg((v/(√2)))∣_0 ^(+∞) =(π^3 /(2(√2)))⇒Ω=(π^3 /(4(√2)))                         ∴     ∫_0 ^(π/2) ((πx+sin^4 (x)−cos^4 (x))/(sin^4 (x)+cos^4 (x)))dx=(π^3 /(4(√2)))                                                    KAMEL BENAICHA

Putt=π2xΩ=0π2π22πt+cos4(t)sin4(t)cos4(t)+sin4(t)dx2Ω=π220π2dxcos4(x)+sin4(x)=π220π2dx12sin2(x)cos2(x)=2π20π2dx2sin2(2x)=t=2xπ20πdt2sin2(t)=2π20πdtcos(2t)+3=u=2tπ202πducos(u)+3=π2ππducos(u)+3=v=tg(u22π2+dv1v2+3+3v2=2π20+dvv2+2=π22Arctg(v2)0+=π322Ω=π3420π2πx+sin4(x)cos4(x)sin4(x)+cos4(x)dx=π342KAMELBENAICHA

Terms of Service

Privacy Policy

Contact: info@tinkutara.com