Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 83874 by Power last updated on 07/Mar/20

Commented by niroj last updated on 07/Mar/20

   xy( x^2 −y^2 )= 24....(i)           x^2 +y^2 =10......(ii)    multipy by xy in (ii)then (i)+(ii)         x^3 y−xy^3 =24        ((x^3 y+xy^3  = 10xy)/(2x^3 y=10xy+24))         x^3 y=5xy+12      x^3 y−5xy=12     xy(x^2 −5)=12        xy = ((12)/(x^2 −5))         y= ((12)/(x^3 −5x))......(iii)            putting the value of y in (ii)     x^2 +y^2 =10   x^2 +(((12)/(x^3 −5x)))^2 =10   x^2 + ((144)/(x^2 (x^2 −5)^2 )) =10  or , (((x^2 )^2 (x^2 −5)^2 +144)/(x^2 (x^2 −5)^2 ))=10   or,(x^2 )^2 (x^2 −5)^2 +144=10x^2 (x^2 −5)^2    or, (x^2 )^2 (x^2 −5)^2 −10x^2 (x^2 −5)^2 +144=0     x^2 −5=t⇒ x^2 =t+5    (t+5)^2 t^2 −10(t+5)t^2 +144=0    t^2 (t+5){t+5−10}+144=0    t^2 (t+5)(t−5)+144=0    t^2 (t^2 −25)+144=0    (t^2 )^2 −25t^2 +144=0     t^2 = ((25+^− (√(625−576)))/2)    t^2 = ((25+^− (√(49)))/2)= ((25+^− 7)/2)    t^2 = ((25+7)/2)=16(+ve )   t^2 = ((25−7)/2)=9 (−ve)    t^2 =9, 16   t= +^− 3, +^− 4     again,if t^2 =9    t=x^2 −5      t^2 =(x^2 −5)^2     (x^2 −5)^2 −9=0    (x^2 −5+3)(x^2 −5−3)=0      (x^2 −2)(x^2 −8)=0    x=+_− (√2) , +_− 2(√2)     now again if t^2 =16       t^2 =(x^2 −5)^2 ⇒ 16=(x^2 −5)^2        (x^2 −5)−4^2 =0    (x^2 −5+4)(x^2 −5−4)=0     (x^2 −1)(x^2 −9)=0      x=+_− 1, +_− 3      ∴ x= +_− (1,3,(√2) ,2(√2)  )    for y...also  put the value of x     in terms of (iii) .

xy(x2y2)=24....(i)x2+y2=10......(ii)multipybyxyin(ii)then(i)+(ii)x3yxy3=24x3y+xy3=10xy2x3y=10xy+24x3y=5xy+12x3y5xy=12xy(x25)=12xy=12x25y=12x35x......(iii)puttingthevalueofyin(ii)x2+y2=10x2+(12x35x)2=10x2+144x2(x25)2=10or,(x2)2(x25)2+144x2(x25)2=10or,(x2)2(x25)2+144=10x2(x25)2or,(x2)2(x25)210x2(x25)2+144=0x25=tx2=t+5(t+5)2t210(t+5)t2+144=0t2(t+5){t+510}+144=0t2(t+5)(t5)+144=0t2(t225)+144=0(t2)225t2+144=0t2=25+6255762t2=25+492=25+72t2=25+72=16(+ve)t2=2572=9(ve)t2=9,16t=+3,+4again,ift2=9t=x25t2=(x25)2(x25)29=0(x25+3)(x253)=0(x22)(x28)=0x=+2,+22nowagainift2=16t2=(x25)216=(x25)2(x25)42=0(x25+4)(x254)=0(x21)(x29)=0x=+1,+3x=+(1,3,2,22)fory...alsoputthevalueofxintermsof(iii).

Answered by john santu last updated on 07/Mar/20

(xy)^2 = (5+((12)/(xy)))(5−((12)/(xy)))  (xy)^2  = 25−((144)/((xy)^2 ))  let (xy)^2  = t ⇒ t+((144)/t)−25=0  t^2 −25t +144 = 0   t = ((25±(√(625−576)))/2) = ((25±7)/2)=16 or 9  xy = ± 4 or ± 3 ⇒ i think it easy to solve

(xy)2=(5+12xy)(512xy)(xy)2=25144(xy)2let(xy)2=tt+144t25=0t225t+144=0t=25±6255762=25±72=16or9xy=±4or±3ithinkiteasytosolve

Terms of Service

Privacy Policy

Contact: info@tinkutara.com