Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 84021 by TANMAY PANACEA last updated on 08/Mar/20

Commented by abdomathmax last updated on 09/Mar/20

I =∫_0 ^2  ((ln(1+2x))/(1+x^2 ))  let f(a) =∫_0 ^2  ((ln(a+2x))/(1+x^2 ))dx  we have f^′ (a) =(1/a)∫_0 ^2  (dx/((a+2x)(1+x^2 ))) let decompose  F(x)=(1/((2x+a)(x^2  +1))) ⇒F(x)=(α/(2x+a)) +((βx+c)/(x^2  +1))  α =(1/(((−(a/2))^(2 ) +1))) =(1/((a^2 /4)+1)) =(4/(4+a^2 ))  lim_(x→+∞)    xF(x)=0=(α/2) +β ⇒β=−(α/2) =−(2/(4+a^2 ))  F(0)=(1/a) =(α/a) +c ⇒c=(1/a)−(α/a) =((1−α)/a)  =((1−(4/(4+a^2 )))/a) =(a^2 /(a(4+a^2 ))) ⇒  F(x)=(4/((a^2  +4)(2x+a))) +((((−2)/(a^2 +4))x +(a/(a^2  +4)))/(x^(2 ) +1))  =(1/(a^2 +4)){ (4/(2x+a)) +((−2x+a)/(x^2  +1))} ⇒  f^′ (a)=(1/(a(a^2  +4))){∫_0 ^2  ((4/(2x+a))+((−2x+a)/(x^2  +1)))dx}  =(1/(a(a^2  +4))) ∫_0 ^2  ((2dx)/(x+(a/2))) −(2/(a(a^2 +4)))(1/2) ∫_0 ^2   ((2x−2a)/(x^2  +1))dx  =(2/(a(a^2 +4)))[ln∣x+(a/2)∣]_0 ^2 −(1/(a(a^2  +4))) ∫_0 ^2  ((2xdx)/(x^2  +1))  +(1/((a^2  +4)))∫_0 ^2   (2/(x^2 +1))dx  =(2/(a(a^2  +4)))(ln(2+(a/2))−ln((a/2)))−(1/(a(a^2  +4)))[ln(x^2  +1)]_0 ^2   +(2/(a^2  +4))[arctan(x)]_0 ^2   =(2/(a(a^2  +4)))ln(((4+a)/a))−((ln5)/(a(a^(2 ) +4))) +((2arctan(2))/(a^2  +4))  ⇒f(a)=∫_1 ^a  (2/(t(t^2  +4)))ln(((t+4)/t))dt−ln(5)∫_1 ^a  (dt/(t(t^2  +4)))  +2arctan(2) ∫_1 ^a   (dt/(t^2  +4)) +C ....be contonued...

I=02ln(1+2x)1+x2letf(a)=02ln(a+2x)1+x2dxwehavef(a)=1a02dx(a+2x)(1+x2)letdecomposeF(x)=1(2x+a)(x2+1)F(x)=α2x+a+βx+cx2+1α=1((a2)2+1)=1a24+1=44+a2limx+xF(x)=0=α2+ββ=α2=24+a2F(0)=1a=αa+cc=1aαa=1αa=144+a2a=a2a(4+a2)F(x)=4(a2+4)(2x+a)+2a2+4x+aa2+4x2+1=1a2+4{42x+a+2x+ax2+1}f(a)=1a(a2+4){02(42x+a+2x+ax2+1)dx}=1a(a2+4)022dxx+a22a(a2+4)12022x2ax2+1dx=2a(a2+4)[lnx+a2]021a(a2+4)022xdxx2+1+1(a2+4)022x2+1dx=2a(a2+4)(ln(2+a2)ln(a2))1a(a2+4)[ln(x2+1)]02+2a2+4[arctan(x)]02=2a(a2+4)ln(4+aa)ln5a(a2+4)+2arctan(2)a2+4f(a)=1a2t(t2+4)ln(t+4t)dtln(5)1adtt(t2+4)+2arctan(2)1adtt2+4+C....becontonued...

Answered by TANMAY PANACEA last updated on 08/Mar/20

1)∫_1 ^∞ ((2x^3 −1)/(x^6 +2x^3 +9x^2 +1))dx  =∫_1 ^∞ ((2x^3 −1)/((x^3 +1)^2 +9x^2 ))dx  =∫_1 ^∞ ((2x−(1/x^2 ))/((((x^3 +1)/x))^2 +9))dx  ∫_1 ^∞ ((2x−(1/x^2 ))/((x^2 +(1/x))^2 +3^2 ))dx=∫_1 ^∞ ((d(x^2 +(1/x)))/((x^2 +(1/x))^2 +3^2 ))  (1/3)×∣tan^(−1) (((x^2 +(1/x)))/3))∣_1 ^∞   (1/3)×(tan^(−1) ∞−tan^(−1) (2/3))  (1/3)×((π/2)−tan^(−1) (2/3))

1)12x31x6+2x3+9x2+1dx=12x31(x3+1)2+9x2dx=12x1x2(x3+1x)2+9dx12x1x2(x2+1x)2+32dx=1d(x2+1x)(x2+1x)2+3213×tan1(x2+1x)3)113×(tan1tan123)13×(π2tan123)

Answered by TANMAY PANACEA last updated on 08/Mar/20

Answered by TANMAY PANACEA last updated on 08/Mar/20

∫_0 ^(π/4) ((ln(cotx))/([(sinx)^(2009) +(cosx)^(2009) ]^2 ))(sin2x)^(2008)   ∫_0 ^(π/4) ((ln(cotx))/((sinx)^(4018) [1+(cotx)^(2009) ]^2 ))×2^(2008) ×sin^(2008) xcos^(2008) x  ∫_0 ^(π/4) ((ln(cotx))/([1+(cotx)^(2009) ]^2 ))×2^(2008) ×((cos^(2008) x)/(sin^(2010) ))dx  ∫_0 ^(π/4) ((ln(cotx))/([1+(cotx)^(2009) ]^2 ))×2^(2008) ×(cotx)^(2008) ×cosec^2 xdx  t=cotx   (dt/dx)=−cozec^2 x  ∫_∞ ^1 ((lnt)/((1+t^(2009) )^2 ))×2^(2008) ×t^(2008) ×−dt  2^(2008) ∫_1 ^∞ ((lnt)/((1+t^(2009) )^2 ))×t^(2008) ×dt

0π4ln(cotx)[(sinx)2009+(cosx)2009]2(sin2x)20080π4ln(cotx)(sinx)4018[1+(cotx)2009]2×22008×sin2008xcos2008x0π4ln(cotx)[1+(cotx)2009]2×22008×cos2008xsin2010dx0π4ln(cotx)[1+(cotx)2009]2×22008×(cotx)2008×cosec2xdxt=cotxdtdx=cozec2x1lnt(1+t2009)2×22008×t2008×dt220081lnt(1+t2009)2×t2008×dt

Terms of Service

Privacy Policy

Contact: info@tinkutara.com