Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 84420 by Power last updated on 12/Mar/20

Commented by Power last updated on 12/Mar/20

prove it

proveit

Commented by Power last updated on 12/Mar/20

(a/b)+(b/c)+(c/a)+3≥(√a)+(√b)+(√c)

ab+bc+ca+3a+b+c

Answered by mind is power last updated on 12/Mar/20

(a/b)+(b/c)+(c/a)+3≥(√a)+(√b)+(√c)  (a/b)+(b/c)+(c/a)+(1/4)(a+b+c)=(a/b)+(b/4)+(b/c)+(c/4)+(c/a)+(a/4)   AM−GM⇒(a/b)+(b/4)≥2(√((a/b).(b/4)))=(√a)  (b/c)+(c/4)≥(√b),(c/a)+(a/4)≥(√c)⇒  (a/b)+(b/c)+(c/a)+((a+b+c)/4)≥(√a)+(√b)+(√c)  ⇔(a/b)+(b/c)+(c/a)+3≥(√a)+(√b)+(√c)  condition is (a,b,c)∈R_+ ^3 ∣a+b+c=12 not ∈N only

ab+bc+ca+3a+b+cab+bc+ca+14(a+b+c)=ab+b4+bc+c4+ca+a4AMGMab+b42ab.b4=abc+c4b,ca+a4cab+bc+ca+a+b+c4a+b+cab+bc+ca+3a+b+cconditionis(a,b,c)R+3a+b+c=12notNonly

Commented by Power last updated on 13/Mar/20

thanks

thanks

Commented by mind is power last updated on 13/Mar/20

pleasur

pleasur

Terms of Service

Privacy Policy

Contact: info@tinkutara.com