Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 84689 by mr W last updated on 15/Mar/20

Commented by mr W last updated on 15/Mar/20

the parabola is rolled along the circle  as shown.  find the equation of the parabola when  the touching point is at the position θ.

theparabolaisrolledalongthecircleasshown.findtheequationoftheparabolawhenthetouchingpointisatthepositionθ.

Commented by mr W last updated on 16/Mar/20

Answered by mr W last updated on 15/Mar/20

Commented by mr W last updated on 16/Mar/20

say in local system x′y′ the point P  is (p, p^2 ).  BP=AP=aθ  BP=∫_0 ^( p) (√(1+(2x)^2 )) dx=((sinh^(−1)  (2p)+(2p)(√(1+(2p)^2 )))/4)  ⇒sinh^(−1)  (2p)+(2p)(√(1+(2p)^2 ))=4aθ  tan ϕ=y′=2p  ⇒ϕ=tan^(−1) (2p)    in xy−system:  P(a sin θ, a cos θ)  inclination angle of x′−axis:  α=π−θ−ϕ  x_B =a sin θ−p^2  sin α+p cos α  ⇒x_B =a sin θ−p^2  sin (θ+ϕ)−p cos (θ+ϕ)  y_B =a cos θ+p^2  cos α+p sin α  ⇒y_B =a cos θ−p^2  cos (θ+ϕ)+p sin (θ+ϕ)  x_F =x_B +(1/4) sin α  ⇒x_F =a sin θ+((1/4)−p^2 ) sin (θ+ϕ)−p cos (θ+ϕ)  y_F =y_B −(1/4) cos α  ⇒y_F =a cos θ+((1/4)−p^2 ) cos (θ+ϕ)+p sin (θ+ϕ)  similarly  ⇒x_E =a sin θ−((1/4)+p^2 ) sin (θ+ϕ)−p cos (θ+ϕ)  ⇒y_E =a cos θ−((1/4)+p^2 ) cos (θ+ϕ)+p sin (θ+ϕ)    eqn. of directix:  y−y_E =tan α (x−x_E )  tan (θ+ϕ)(x−x_E )+y−y_E =0    eqn. of rolled parabola in xy−system:  distance to directrix = distance to focus  ((tan (θ+ϕ)(x−x_E )+y−y_E )/(√(tan^2  (θ+ϕ)+1)))=(√((x−x_F )^2 +(y−y_F )^2 ))  ⇒[tan (θ+ϕ)(x−x_E )+y−y_E ]^2 =[1+tan^2  (θ+ϕ)][(x−x_F )^2 +(y−y_F )^2 ]

sayinlocalsystemxythepointPis(p,p2).BP=AP=aθBP=0p1+(2x)2dx=sinh1(2p)+(2p)1+(2p)24sinh1(2p)+(2p)1+(2p)2=4aθtanφ=y=2pφ=tan1(2p)inxysystem:P(asinθ,acosθ)inclinationangleofxaxis:α=πθφxB=asinθp2sinα+pcosαxB=asinθp2sin(θ+φ)pcos(θ+φ)yB=acosθ+p2cosα+psinαyB=acosθp2cos(θ+φ)+psin(θ+φ)xF=xB+14sinαxF=asinθ+(14p2)sin(θ+φ)pcos(θ+φ)yF=yB14cosαyF=acosθ+(14p2)cos(θ+φ)+psin(θ+φ)similarlyxE=asinθ(14+p2)sin(θ+φ)pcos(θ+φ)yE=acosθ(14+p2)cos(θ+φ)+psin(θ+φ)eqn.ofdirectix:yyE=tanα(xxE)tan(θ+φ)(xxE)+yyE=0eqn.ofrolledparabolainxysystem:distancetodirectrix=distancetofocustan(θ+φ)(xxE)+yyEtan2(θ+φ)+1=(xxF)2+(yyF)2[tan(θ+φ)(xxE)+yyE]2=[1+tan2(θ+φ)][(xxF)2+(yyF)2]

Commented by mr W last updated on 16/Mar/20

Commented by mr W last updated on 16/Mar/20

Commented by mr W last updated on 16/Mar/20

Commented by mr W last updated on 16/Mar/20

Commented by mr W last updated on 16/Mar/20

Commented by mr W last updated on 17/Mar/20

find the parabola with its initial  orientation    α=π−θ−ϕ=−π  ⇒θ=2π−ϕ=2π−tan^(−1) (2p)  ⇒sinh^(−1)  (2p)+(2p)(√(1+(2p)^2 ))=4a[2π−tan^(−1) (2p)]

findtheparabolawithitsinitialorientationα=πθφ=πθ=2πφ=2πtan1(2p)sinh1(2p)+(2p)1+(2p)2=4a[2πtan1(2p)]

Commented by mr W last updated on 17/Mar/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com