All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 84693 by Power last updated on 15/Mar/20
Commented by abdomathmax last updated on 15/Mar/20
letφ(t)=∫0∞sin(tx)x(x2+1)dxwehaveφ′(t)=∫0∞cos(tx)x2+1dx⇒2φ′(t)=∫−∞+∞cos(tx)x2+1dx=Re(∫−∞+∞eitxx2+1dx)residustheoremgive∫−∞+∞eitxx2+1dx=2iπRes(f,i)=2iπ×e−t2i=πe−t⇒2φ′(t)=πe−t⇒φ′(t)=π2e−t⇒φ(t)=k−π2e−tφ(0)=0=k−π2⇒k=π2⇒φ(t)=π2−π2e−tI=∫0∞sinxx(1+x2)dx=φ(1)=π2−π2e
Answered by Joel578 last updated on 15/Mar/20
I(t)=∫0∞sin(tx)x(1+x2)dx⇒I′(t)=∫0∞cos(tx)1+x2dx⇒I″(t)=−∫0∞xsin(tx)1+x2dx=−∫0∞(x2+1−1)sin(tx)x(1+x2)dx=−∫0∞sin(tx)xdx+∫0∞sin(tx)x(1+x2)dx⇒I″(t)=−π2+I(t)⇒I″−I=−π2Solvingnon−homogeneousODEgives⇒I(t)=C1et+C2e−t+π2⇒I′(t)=C1et−C2e−tNotethatI(0)=∫0∞0dx=C1+C2+π2=0andI′(0)=∫0∞11+x2dx=C1−C2=π2⇒C1=0,C2=−π2⇒I(t)=∫0∞sin(tx)x(1+x2)dx=−π2e−t+π2⇒I(1)=∫0∞sin(x)x(1+x2)dx=−π2e+π2
Commented by Power last updated on 15/Mar/20
thankyou
Terms of Service
Privacy Policy
Contact: info@tinkutara.com