Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 84693 by Power last updated on 15/Mar/20

Commented by abdomathmax last updated on 15/Mar/20

let ϕ(t)=∫_0 ^∞  ((sin(tx))/(x(x^2  +1)))dx  we have  ϕ^′ (t)=∫_0 ^∞  ((cos(tx))/(x^2 +1))dx ⇒2ϕ^′ (t)=∫_(−∞) ^(+∞)  ((cos(tx))/(x^2  +1))dx  =Re(∫_(−∞) ^(+∞)  (e^(itx) /(x^2  +1))dx)  residus theorem give  ∫_(−∞) ^(+∞)  (e^(itx) /(x^2  +1))dx =2iπ Res(f,i) =2iπ×(e^(−t) /(2i))  =πe^(−t)  ⇒2ϕ^′ (t)=πe^(−t)  ⇒ϕ^′ (t)=(π/2)e^(−t)  ⇒  ϕ(t)=k−(π/2)e^(−t)   ϕ(0)=0=k−(π/2) ⇒k=(π/2) ⇒ϕ(t)=(π/2)−(π/2)e^(−t)   I =∫_0 ^∞   ((sinx)/(x(1+x^2 )))dx =ϕ(1)=(π/2)−(π/(2e))

letφ(t)=0sin(tx)x(x2+1)dxwehaveφ(t)=0cos(tx)x2+1dx2φ(t)=+cos(tx)x2+1dx=Re(+eitxx2+1dx)residustheoremgive+eitxx2+1dx=2iπRes(f,i)=2iπ×et2i=πet2φ(t)=πetφ(t)=π2etφ(t)=kπ2etφ(0)=0=kπ2k=π2φ(t)=π2π2etI=0sinxx(1+x2)dx=φ(1)=π2π2e

Answered by Joel578 last updated on 15/Mar/20

I(t) = ∫_0 ^∞  ((sin (tx))/(x(1 + x^2 ))) dx  ⇒ I ′(t) = ∫_0 ^∞  ((cos (tx))/(1 + x^2 )) dx  ⇒ I ′′(t) = −∫_0 ^∞  ((x sin (tx))/(1 + x^2 )) dx =  −∫_0 ^∞  (((x^2  + 1 − 1)sin (tx))/(x(1 + x^2 ))) dx                = −∫_0 ^∞  ((sin (tx))/x) dx + ∫_0 ^∞  ((sin (tx))/(x(1 + x^2 ))) dx  ⇒ I ′′(t) = −(π/2) + I(t)  ⇒ I ′′ − I = −(π/2)  Solving non−homogeneous ODE gives  ⇒ I(t) = C_1 e^t  + C_2 e^(−t)  + (π/2)  ⇒ I ′(t) = C_1 e^t  − C_2 e^(−t)   Note that I(0) = ∫_0 ^∞ 0 dx = C_1  + C_2  + (π/2) = 0   and I ′(0) = ∫_0 ^∞ (1/(1 + x^2 )) dx = C_1  − C_2  = (π/2)  ⇒ C_1  = 0, C_2  = −(π/2)  ⇒ I(t) = ∫_0 ^∞ ((sin (tx))/(x(1 + x^2 ))) dx = −(π/2)e^(−t)  + (π/2)  ⇒ I(1) = ∫_0 ^∞  ((sin (x))/(x(1 + x^2 ))) dx = −(π/(2e)) + (π/2)

I(t)=0sin(tx)x(1+x2)dxI(t)=0cos(tx)1+x2dxI(t)=0xsin(tx)1+x2dx=0(x2+11)sin(tx)x(1+x2)dx=0sin(tx)xdx+0sin(tx)x(1+x2)dxI(t)=π2+I(t)II=π2SolvingnonhomogeneousODEgivesI(t)=C1et+C2et+π2I(t)=C1etC2etNotethatI(0)=00dx=C1+C2+π2=0andI(0)=011+x2dx=C1C2=π2C1=0,C2=π2I(t)=0sin(tx)x(1+x2)dx=π2et+π2I(1)=0sin(x)x(1+x2)dx=π2e+π2

Commented by Power last updated on 15/Mar/20

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com