All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 84894 by Power last updated on 17/Mar/20
Commented by abdomathmax last updated on 18/Mar/20
I=∫ax+bcx+ddxwedothechangementax+bcx+d=t⇒ax+bcx+d=t2⇒ax+b=ct2x+dt2⇒(a−ct2)x=dt2−b⇒x=dt2−ba−ct2⇒dx=(2dt)(a−ct2)−(dt2−b)(−2ct)(a−ct2)2dt=2adt−2dct3+2cdt3−2bct(ct2−a)2=2(ad−bc)t(ct2−a)2⇒I=∫t×2(ad−bc)t(ct2−a)2dt=2(ad−bc)∫t2(ct2−a)2dt=2(ad−bc)c∫ct2−a+a(ct2−a)2dt=2(ad−bc)c∫dtct2−a+2a(ad−bc)c∫dt(ct2−a)2wehave∫dtct2−a=∫dt(ct)2−(a)2=∫dt(ct−a)(ct+a)=∫(1ct−a−1ct+a)dt=12acln∣ct−act+a∣+c∫dt(ct2−a)2=∫1(ct−a)2(ct+a)2letdecomposeF(t)=1(ct−a)2(ct+a)2F(t)=αct−a+β(ct−a)2+λct+a+ρ(ct+a)2...becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com