Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 85365 by Power last updated on 21/Mar/20

Answered by jagoll last updated on 21/Mar/20

C = S_(112)  = ((112)/2)(−4+(111×(−8))  = 56 ×(−892)  = −49952

C=S112=1122(4+(111×(8))=56×(892)=49952

Commented by Power last updated on 21/Mar/20

?

?

Commented by john santu last updated on 21/Mar/20

consider (1−x)(1+2x) =   (1−x)(1+x+x) = 1−x^2 +(1−x)x  = 1−x^2 +x−x^2 =1+x−2x^2   (1−3x)(1+4x) = (1−3x)(1+3x+x)  = 1−9x^2 +x(1−3x)  = 1+x−12x^2   (1−5x)(1+6x)=(1−5x)(1+5x+x)  = 1−25x^2 +x(1−5x)  = 1+x−30x^2   now : (1+x−2x^2 )(1+x−12x^2 )(1+x−30x^2 )×...  ×(1+x−892x^2 )

consider(1x)(1+2x)=(1x)(1+x+x)=1x2+(1x)x=1x2+xx2=1+x2x2(13x)(1+4x)=(13x)(1+3x+x)=19x2+x(13x)=1+x12x2(15x)(1+6x)=(15x)(1+5x+x)=125x2+x(15x)=1+x30x2now:(1+x2x2)(1+x12x2)(1+x30x2)×...×(1+x892x2)

Commented by Power last updated on 21/Mar/20

i do not understand

idonotunderstand

Commented by john santu last updated on 21/Mar/20

ouwh

ouwh

Answered by mr W last updated on 21/Mar/20

(1−(2n−1)x)(1+2nx)=1+x−2n(2n−1)x^2     {(1−x)(1+2x)(1−3x)(1+4x)...(1−221x)(1+222x)}(1−223x)  ={Π_(n=1) ^(111) [1−(2n−1)x](1+2nx)}(1−223x)  ={Π_(n=1) ^(111) [1+x−2n(2n−1)x^2 ]}(1−223x)  coef. of x^2 :  −Σ_(n=1) ^(111) 2n(2n−1)+((111×110)/2)−223×111  =−Σ_(n=1) ^(111) (4n^2 −2n)+((111×110)/2)−223×111  =−(4×((111×112×223)/6)−2×((111×112)/2))+((111×110)/2)−223×111  =−4×((111×112×223)/6)−56×111  =−1 854 440 ⇒ answer

(1(2n1)x)(1+2nx)=1+x2n(2n1)x2{(1x)(1+2x)(13x)(1+4x)...(1221x)(1+222x)}(1223x)={111n=1[1(2n1)x](1+2nx)}(1223x)={111n=1[1+x2n(2n1)x2]}(1223x)coef.ofx2:111n=12n(2n1)+111×1102223×111=111n=1(4n22n)+111×1102223×111=(4×111×112×22362×111×1122)+111×1102223×111=4×111×112×223656×111=1854440answer

Commented by Power last updated on 21/Mar/20

thanks

thanks

Answered by mr W last updated on 21/Mar/20

an other way  (1−x)(1+2x)(1−3x)(1+4x)...(1−223x)  =(1+a_2 x)(1+a_2 x)(1+a_3 x)...(1+a_(223) x)  with a_n =(−1)^n n    coef. of x^2 :  C_2 =Σ_(i,j=1,2,...,223_(j>i) ) a_i a_j   =(1/2){Σ_(i=1) ^(223) a_i (Σ_(j=1) ^(223) a_j −a_i )}  =(1/2){(Σ_(i=1) ^(223) a_i )^2 −Σ_(i=1) ^(223) a_i ^2 }    Σ_(i=1) ^(223) a_i =(−1+2)+(−3+4)−...+(−221+222)−223  =1×111−223  =112    Σ_(i=1) ^(223) a_i ^2 =(−1)^2 +2^2 +(−3)^2 +...+(−223)^2   =((223×224×(2×223+1))/6)=3 721 424    ⇒C_2 =(1/2)(112^2 −3 721 424)=−1 854 440

anotherway(1x)(1+2x)(13x)(1+4x)...(1223x)=(1+a2x)(1+a2x)(1+a3x)...(1+a223x)withan=(1)nncoef.ofx2:C2=i,j=1,2,...,223j>iaiaj=12{223i=1ai(223j=1ajai)}=12{(223i=1ai)2223i=1ai2}223i=1ai=(1+2)+(3+4)...+(221+222)223=1×111223=112223i=1ai2=(1)2+22+(3)2+...+(223)2=223×224×(2×223+1)6=3721424C2=12(11223721424)=1854440

Terms of Service

Privacy Policy

Contact: info@tinkutara.com