Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 85896 by ar247 last updated on 25/Mar/20

Commented by abdomathmax last updated on 25/Mar/20

I=∫  ((5x−5)/(3x^2 −8x−3))dx  3x^2 −8x−3=0 →Δ^′ =4^2 −(3)(−3) =16+9=25  x_1 =((4+5)/3) =3 and x_2 =((4−5)/3)=−(1/3) ⇒  I =∫   ((5x−5)/(3(x−3)(x+(1/3))))dx let decompose  F(x)=((5x−5)/((x−3)(3x+1)))  F(x)=(a/(x−3)) +(b/(3x+1))  a=(x−3)F(x)∣_(x=3)    =((10)/(10))=1  b=(3x+1)F(x)∣_(x=−(1/3))    = ((−(5/3)−5)/(−(1/3)−3)) =((20)/(10))=2 ⇒  F(x)=(1/(x−3))+(2/(3x+1)) ⇒ I =∫(dx/(x−3)) +2∫  (dx/(3x+1))  =ln∣x−3∣+(2/3)ln∣3x+1∣ +c

I=5x53x28x3dx3x28x3=0Δ=42(3)(3)=16+9=25x1=4+53=3andx2=453=13I=5x53(x3)(x+13)dxletdecomposeF(x)=5x5(x3)(3x+1)F(x)=ax3+b3x+1a=(x3)F(x)x=3=1010=1b=(3x+1)F(x)x=13=535133=2010=2F(x)=1x3+23x+1I=dxx3+2dx3x+1=lnx3+23ln3x+1+c

Commented by abdomathmax last updated on 25/Mar/20

2) A =∫  ((2x^5 −x^3 −1)/(x^3 −4x))dx  ⇒  A =∫  ((2(x^3 −4x)x^2 +8x^3 −x^3 −1)/(x^3 −4x))dx  =2x  +∫   ((7x^3 −1)/(x^3 −4x))dx  =2x +∫  ((7(x^3 −4x)+28x−1)/(x^3 −4x))dx  =2x +7 +∫   ((28x−1)/(x^3 −4x))dx let decompose  F(x)=((28x−1)/(x^3 −4x)) =((28x−1)/(x(x−2)(x+2)))  F(x)=(a/x) +(b/(x−2)) +(c/(x+2))  a =((−1)/((−2)(2))) =(1/4)  b=((56−1)/(2.4)) =((55)/8)  c=((−56−1)/((−2)(−4))) =((57)/8) ⇒F(x)=(1/(4x))+((55)/(8(x−2)))+((57)/(8(x+2)))  A =2x+7 +(1/4)ln∣x∣ +((55)/8)ln∣x−2∣ +((57)/8)ln∣x+2∣ +C

2)A=2x5x31x34xdxA=2(x34x)x2+8x3x31x34xdx=2x+7x31x34xdx=2x+7(x34x)+28x1x34xdx=2x+7+28x1x34xdxletdecomposeF(x)=28x1x34x=28x1x(x2)(x+2)F(x)=ax+bx2+cx+2a=1(2)(2)=14b=5612.4=558c=561(2)(4)=578F(x)=14x+558(x2)+578(x+2)A=2x+7+14lnx+558lnx2+578lnx+2+C

Commented by abdomathmax last updated on 25/Mar/20

4) I = ∫ ((√(x^2 −25))/x)dx  we do the chsngement  x=5 ch(t) ⇒ I =∫ ((5 sh(t))/(5ch(t))) ×5sh(t)dt  =5 ∫  ((sh^2 t)/(cht)) dt =(5/2)∫  ((ch(2t)−1)/(ch(t)))dt  =(5/2)∫  ((((e^(2t)  +e^(−2t) )/2)−1)/((e^t  +e^(−t) )/2))dt =(5/2)∫  ((e^(2t) +e^(−2t) −2)/(e^t  +e^(−t) ))dt  =_(e^t  =u)     (5/2)∫  ((u^2  +u^(−2) −2)/(u+u^(−1) ))(du/u)  =(5/2)∫  ((u^2 +u^(−2) −2)/(u^2  +1))du  =(5/2)∫  ((u^4  +1−2u^2 )/(u^2 (u^2  +1)))du  decomposition  ((u^4 −2u^2  +1)/(u^4  +u^2 )) =((u^4 +u^2 −3u^2 +1)/(u^4  +u^2 ))  =1 +((−3u^2  +1)/(u^4  +u^2 ))  F(u) =((−3u^2  +1)/(u^4  +u^2 )) =((−3u^2 +1)/(u^2 (u^2  +1)))  =(a/u) +(b/u^2 ) +((cu +d)/(u^2  +1))  F(−u)=F(u) ⇒((−a)/u) +(b/u^2 ) +((−cu +d)/(u^2  +1))=(a/u) +(b/u^2 )+((cu+d)/(u^2  +1))  ⇒a=0  and c=0 ⇒F(u)=(b/u^2 ) +(d/(u^2 +1))  b=1 ⇒F(u)=(1/u^2 ) +(d/(u^2  +1))  F(1)=−1 =1 +(d/2) ⇒−2 =(d/2) ⇒d=−4 ⇒  F(u)=(1/u^2 )−(4/(u^2  +1)) ⇒  I =(5/2){u +∫ F(u)du}  =(5/2)u +(5/2)(−(1/u)−4 arctan(u)) +C  =(5/2)e^t −(5/2)e^(−t)   −10 arctan(e^t )+C  t=argch((x/5)) =ln((x/5)+(√((x^2 /(25))−1))) ⇒  I =(5/2){ (x/5)+(√((x^2 /(25))−1))−(1/((x/5)+(√((x^2 /(25))−1))))}  −10 arctan((x/5)+(√((x^2 /(25))−1))) +C

4)I=x225xdxwedothechsngementx=5ch(t)I=5sh(t)5ch(t)×5sh(t)dt=5sh2tchtdt=52ch(2t)1ch(t)dt=52e2t+e2t21et+et2dt=52e2t+e2t2et+etdt=et=u52u2+u22u+u1duu=52u2+u22u2+1du=52u4+12u2u2(u2+1)dudecompositionu42u2+1u4+u2=u4+u23u2+1u4+u2=1+3u2+1u4+u2F(u)=3u2+1u4+u2=3u2+1u2(u2+1)=au+bu2+cu+du2+1F(u)=F(u)au+bu2+cu+du2+1=au+bu2+cu+du2+1a=0andc=0F(u)=bu2+du2+1b=1F(u)=1u2+du2+1F(1)=1=1+d22=d2d=4F(u)=1u24u2+1I=52{u+F(u)du}=52u+52(1u4arctan(u))+C=52et52et10arctan(et)+Ct=argch(x5)=ln(x5+x2251)I=52{x5+x22511x5+x2251}10arctan(x5+x2251)+C

Commented by Kunal12588 last updated on 26/Mar/20

sir in (2) ∫2x^2 dx=(2/3)x^3  ?

sirin(2)2x2dx=23x3?

Answered by jagoll last updated on 26/Mar/20

(3) ∫ (dx/(√(x^2 +4)))?  [ x = 2 tan u ]  ∫ ((2sec^2 u)/(2sec u)) du = ∫ sec u du  = ln ∣sec u + tan u ∣ + c  = ln ∣ ((x+(√(x^2 +4)))/2) ∣ + c

(3)dxx2+4?[x=2tanu]2sec2u2secudu=secudu=lnsecu+tanu+c=lnx+x2+42+c

Commented by Kunal12588 last updated on 26/Mar/20

=ln ∣x+(√(x^2 +4))∣+C

=lnx+x2+4+C

Commented by john santu last updated on 26/Mar/20

same it sir  ln ∣((x+(√(x^2 +4)))/2)∣ +c =   ln ∣x+(√(x^2 +4 )) ∣ + C

sameitsirlnx+x2+42+c=lnx+x2+4+C

Answered by Kunal12588 last updated on 26/Mar/20

(5)I=∫(dx/(√(5−4x−2x^2 )))  =(1/(√2))∫(dx/(√(−(x^2 +2x−(5/2)))))  =(1/(√2))∫(dx/(√(−[(x+1)^2 −(7/2)])))  =(1/(√2))∫(dx/(√((7/2)−(x+1)^2 )))  =(1/(√2))sin^(−1) (((x+1)/((√7)/(√2))))+C  =(1/(√2))sin^(−1) ((((√2)x+(√2))/(√7)))+C

(5)I=dx54x2x2=12dx(x2+2x52)=12dx[(x+1)272]=12dx72(x+1)2=12sin1(x+172)+C=12sin1(2x+27)+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com