All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 8683 by 314159 last updated on 21/Oct/16
Commented by prakash jain last updated on 21/Oct/16
x4−4cx2+6x2+x+1=(x−p)2(x−a)(x−b)=x4−(2p+a+b)x3+(ab+2ap+2bp+p2)x2−(2abp+ap2+bp2)x+abp2equatingcoefficientsconsttermabp2=1⇒ab=1p2coeffientofx2abp+ap2+bp2=−1(a+b)p2=−1−2abp=−1−2p=−p+2p(a+b)=−p+2p3coefficientofx2ab+2ap+2bp+p2=6ab+2p(a+b)+p2=61p2−21p(p+2p)+p2=61−2p−4+p4=6p2p4−6p2−2p−3=0Thismethodalsogivensamerelationinpthatigotbefore.pleaserecheckquestion.
pisarootp4−4cp3+6p2+p+1=0c=p4+6p2+p+14p3(i)x4−p4+6p2+p+1p3x3+6x2+x+1=0multiplybyp3x4p3−x3p4−(6p2+p+1)x3+(6p3+p2+p)x2−(p2+p)x2+(p3+p2)x−p2x+p3=0x3p3(x−p)−(6p2+p+1)x2(x−p)−(p2+p)x(x−p)−p2(x−p)=0(x−p)(x3p3−(6p2+p+1)x2−(p2+p)x−p2)=0Sincepisrepeatrootx−pisafactorof(x3p3−(6p2+p+1)x2−(p2+p)x−p2).p6−(6p2+p+1)p2−(p2+p)p−p2=0p6−6p4−p3−p2−p3−p2−p2=0p2(p4−6p2−2p−3)=0p4−6p2−2p−3=0Nowassuminganswerinquestionc=13p(p2+3)=p4+6p2+p+14p34p4+12p2=3p4+18p2+3p+3p4−6p2−3p−3=0Buttheequationigotisp4−6p2−2p−3=0Maybesomebodycancheckerrors.Iwillrechecksoon.
Commented by prakash jain last updated on 23/Oct/16
314159,Ithinkthequestionisnotcorrectdidutrytogothruthestepsthatidid.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com