All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 87086 by Chi Mes Try last updated on 02/Apr/20
Answered by mind is power last updated on 03/Apr/20
=∫0+∞2dt(t4+(1+22)t2+1)(1−t2+t4−.........+t100)=A=2∫0+∞dtt104(1+1+22t2+1t4)(1t100−1t98+.......+1)1t=y⇒2∫0+∞y102(1+(1+22)y2+y4)(1−y2+.........+y100)1−y2+.......+y100=1−(−y2)511+y2=1+y1021+y22A=∫0+∞2+2x102dx(1+(1+22)x2+x4)(1−x2+x4−.....+x100)⇒A=∫0+∞1(1+(1+22)x2+x4).1+x102(1−x2+........+x100)dxA=∫0+∞dx(1+(1+22)x2+x4)easynow
Terms of Service
Privacy Policy
Contact: info@tinkutara.com