All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 87105 by Chi Mes Try last updated on 02/Apr/20
Commented by mathmax by abdo last updated on 03/Apr/20
letf(x)=xx−1−1lnx⇒f(x)=xln(x)−x+1(x−1)ln(x)wedothechangementx−1=t⇒f(x)=(t+1)ln(1+t)+1−(t+1)tln(1+t)=g(t)=(t+1)ln(1+t)−ttln(1+t)(x→1⇒t→0)soletusehospitaltheoremu(t)=(t+1)ln(t+1)−t⇒u′(t)=ln(t+1)+1−1=ln(t+1)u(2)(t)=1t+1⇒u(2)(0)=1v(t)=tln(t+1)⇒v′(t)=ln(t+1)+tt+1⇒v(2)(t)=1t+1+1(t+1)2⇒v(2)(o)=12⇒limx→1f(x)=12theresultisproved.
Answered by MJS last updated on 02/Apr/20
2×l′Hopitallimx→1xlnx−x+1(x−1)lnx=limx→1d2dx2[xlnx−x+1]d2dx2[(x−1)lnx]==limx→1xx+1=12
Answered by $@ty@m123 last updated on 03/Apr/20
Lety=x−1asx→1,y→0limy→0{1+yy−1ln(1+y)}limy→0{1+yy−1y−y22+y33−.....}limy→0{1+yy−1y(1−y2+y23−.....)}limy→01y{1+y−11−y2+y23−.....}limy→01y{(1+y)(1−y2+y23−.....)−11−y2+y23−.....}limy→01y{(1+y−y2−y22+y23+y43−.....)−11−y2+y23−.....}limy→01y{y−y2−y22+y23+y43−.....1−y2+y23−.....}limy→01y{y(1−12−y2+y3+y33−.....1−y2+y23−.....}limy→01−12−y2+y3+y33−.....1−y2+y23−.....=1−12−0+0+.....1−0+0+...=12
Terms of Service
Privacy Policy
Contact: info@tinkutara.com