Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 87105 by Chi Mes Try last updated on 02/Apr/20

Commented by mathmax by abdo last updated on 03/Apr/20

let f(x)=(x/(x−1))−(1/(lnx)) ⇒f(x)=((xln(x)−x+1)/((x−1)ln(x))) we do the changement  x−1 =t ⇒f(x)=(((t+1)ln(1+t)+1−(t+1))/(tln(1+t)))=g(t)  =(((t+1)ln(1+t)−t)/(tln(1+t)))  (x→1 ⇒t→0) so  let use hospital theorem  u(t) =(t+1)ln(t+1)−t ⇒u^′ (t)=ln(t+1)+1−1 =ln(t+1)  u^((2)) (t) =(1/(t+1)) ⇒u^((2)) (0)=1  v(t)=tln(t+1) ⇒v^′ (t) =ln(t+1)+(t/(t+1)) ⇒  v^((2)) (t) =(1/(t+1)) +(1/((t+1)^2 )) ⇒v^((2)) (o)=(1/2) ⇒lim_(x→1)  f(x)=(1/2)  the result is proved.

letf(x)=xx11lnxf(x)=xln(x)x+1(x1)ln(x)wedothechangementx1=tf(x)=(t+1)ln(1+t)+1(t+1)tln(1+t)=g(t)=(t+1)ln(1+t)ttln(1+t)(x1t0)soletusehospitaltheoremu(t)=(t+1)ln(t+1)tu(t)=ln(t+1)+11=ln(t+1)u(2)(t)=1t+1u(2)(0)=1v(t)=tln(t+1)v(t)=ln(t+1)+tt+1v(2)(t)=1t+1+1(t+1)2v(2)(o)=12limx1f(x)=12theresultisproved.

Answered by MJS last updated on 02/Apr/20

2×l′Hopital  lim_(x→1)  ((xln x −x+1)/((x−1)ln x)) = lim_(x→1)  (((d^2 /dx^2 )[xln x −x+1])/((d^2 /dx^2 )[(x−1)ln x])) =  =lim_(x→1)  (x/(x+1)) =(1/2)

2×lHopitallimx1xlnxx+1(x1)lnx=limx1d2dx2[xlnxx+1]d2dx2[(x1)lnx]==limx1xx+1=12

Answered by $@ty@m123 last updated on 03/Apr/20

Let y=x−1  as x→1, y→0  lim_(y→0)    {((1+y)/y)−(1/(ln (1+y)))}  lim_(y→0)    {((1+y)/y)−(1/(y−(y^2 /2)+(y^3 /3)− .....))}  lim_(y→0)    {((1+y)/y)−(1/(y(1−(y/2)+(y^2 /3)− .....)))}  lim_(y→0)    (1/y){1+y−(1/(1−(y/2)+(y^2 /3)− .....))}  lim_(y→0)    (1/y){(((1+y)(1−(y/2)+(y^2 /3)− .....)−1)/(1−(y/2)+(y^2 /3)− .....))}  lim_(y→0)    (1/y){(((1+y−(y/2)−(y^2 /2)+(y^2 /3)+(y^4 /3)− .....)−1)/(1−(y/2)+(y^2 /3)− .....))}  lim_(y→0)    (1/y){((y−(y/2)−(y^2 /2)+(y^2 /3)+(y^4 /3)− .....)/(1−(y/2)+(y^2 /3)− .....))}  lim_(y→0)    (1/y){((y(1−(1/2)−(y/2)+(y/3)+(y^3 /3)− .....)/(1−(y/2)+(y^2 /3)− .....))}  lim_(y→0)    ((1−(1/2)−(y/2)+(y/3)+(y^3 /3)− .....)/(1−(y/2)+(y^2 /3)− .....))  =((1−(1/2)−0+0+.....)/(1−0+0+...))  =(1/2)

Lety=x1asx1,y0limy0{1+yy1ln(1+y)}limy0{1+yy1yy22+y33.....}limy0{1+yy1y(1y2+y23.....)}limy01y{1+y11y2+y23.....}limy01y{(1+y)(1y2+y23.....)11y2+y23.....}limy01y{(1+yy2y22+y23+y43.....)11y2+y23.....}limy01y{yy2y22+y23+y43.....1y2+y23.....}limy01y{y(112y2+y3+y33.....1y2+y23.....}limy0112y2+y3+y33.....1y2+y23.....=1120+0+.....10+0+...=12

Terms of Service

Privacy Policy

Contact: info@tinkutara.com