Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 87511 by M±th+et£s last updated on 04/Apr/20

Answered by TANMAY PANACEA. last updated on 04/Apr/20

t=x^3 →(dt/3)=x^2 dx  ∫_(ln3) ^(ln4) (1/3)×((sint)/(sint+sin(ln12−t)))dt =I  using ∫_a ^b f(x)dx=∫_a ^b f(a+b−x)dx  I=(1/3)∫_(ln3) ^(ln4)  ((sin(ln4+ln3−t))/(sin(ln4+ln3−t)+sin(ln12−ln4−ln3+t)))dt  I=(1/3)∫_(ln3) ^(ln4) ((sin(ln12−t))/(sin(ln12−t)+sint))dt  2I=(1/3)∫_(oln3) ^(ln4) dt  I=(1/6)ln((4/3))

t=x3dt3=x2dxln3ln413×sintsint+sin(ln12t)dt=Iusingabf(x)dx=abf(a+bx)dxI=13ln3ln4sin(ln4+ln3t)sin(ln4+ln3t)+sin(ln12ln4ln3+t)dtI=13ln3ln4sin(ln12t)sin(ln12t)+sintdt2I=13oln3ln4dtI=16ln(43)

Commented by M±th+et£s last updated on 04/Apr/20

god bless you sir

godblessyousir

Commented by TANMAY PANACEA. last updated on 04/Apr/20

thank you sir

thankyousir

Answered by redmiiuser last updated on 05/Apr/20

sin x^3 +sin (log 12−x^3 )  =2sin( ((log 12)/2)).cos (x^3 −((log 12)/2))  x^3 −((log 12)/2)=t  dt=3x^2 .dx  (dt/3)=x^2 .dx  sin x^3 =sin (t+((log 12)/2))  (1/(3.2sin (((log 12)/2))))∫_(log 3−((log 12)/2)) ^(log 4−((log 12)/2)  ) ((sin (t+((log 12)/2)))/(cos t)).dt  =(1/(6sin (((log 12)/2))))[cos ( ((log 12)/2)).∫_(log 3−((log 12)/2)) ^(log 4−((log 12)/2)) tan t.dt+sin (((log 12)/2))∫_(log 3−((log 12)/2)) ^(log 4−((log 12)/2)) dt]  =((cot (((log 12)/2)))/6).[log ∣sec(t)∣]_(log 3−((log 12)/2)) ^(log 4 −((log 12)/2)) +(1/6)[t]_(log 3−((log 12)/2)) ^(log 4−((log 12)/2))

sinx3+sin(log12x3)=2sin(log122).cos(x3log122)x3log122=tdt=3x2.dxdt3=x2.dxsinx3=sin(t+log122)13.2sin(log122)log3log122log4log122sin(t+log122)cost.dt=16sin(log122)[cos(log122).log3log122log4log122tant.dt+sin(log122)log3log122log4log122dt]=cot(log122)6.[logsec(t)]log3log122log4log122+16[t]log3log122log4log122

Commented by redmiiuser last updated on 05/Apr/20

I hope now you can insert  the borders.

Ihopenowyoucaninserttheborders.

Commented by M±th+et£s last updated on 05/Apr/20

thank you sir

thankyousir

Commented by redmiiuser last updated on 05/Apr/20

welcome

welcome

Terms of Service

Privacy Policy

Contact: info@tinkutara.com