All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 87540 by Power last updated on 04/Apr/20
Commented by abdomathmax last updated on 05/Apr/20
letI=∫0∞dx(x+1+x2)2changementx=sh(t)giveI=∫0∞ch(t)dt(sh(t)+cht)2=∫0∞ch(t)e2tdt=∫0∞e−2t(et+e−t2)dt=12∫0∞e−tdt+12∫0∞e−3tdt=12[−e−t]0+∞+12[−13e−3t]0+∞=12(1)+16=36+16=46=23
Answered by MJS last updated on 04/Apr/20
∫dx(x+1+x2)2=∫(2x2+1−2xx2+1)dx==23x3+x−23(x2+1)3+C⇒∫∞0dx(x+1+x2)2=23
Commented by Power last updated on 05/Apr/20
sirpleasesolvepls
Terms of Service
Privacy Policy
Contact: info@tinkutara.com