Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 87581 by peter frank last updated on 05/Apr/20

Commented by TANMAY PANACEA. last updated on 05/Apr/20

i[shall solve in paper

i[shallsolveinpaper

Answered by TANMAY PANACEA. last updated on 05/Apr/20

1)∫_0 ^1 ((x^2 dx)/(√(1−x^4 )))dx×∫_0 ^1 (dx/(√(1+x^4 )))  I=I_1 ×I_2   I_1 =∫_0 ^1 ((x^2 dx)/(√(1−x^4 )))   x^2 =sina  →2xdx=cosada  ∫_0 ^(π/2) ((sina)/(cosa))×((cosada)/(2(√(sina))))=(1/2)∫_0 ^(π/2) (sina)^(2×(3/4)−1) (cosa)^(2×(1/2)−1) da  using gamma function  2∫_0 ^(π/2) (sinα)^(2p−1) (cosα)^(2q−1) dα=((⌈(p)⌈(q))/(⌈(p+q)))  I_1 =(1/4)×2∫_0 ^(π/2) (sina)^(2×(3/4)−1) (cosa)^(2×(1/2)−1) da  =(1/4)×((⌈((3/4))⌈((1/2)))/(⌈((3/4)+(1/2))))  I_2 =∫_0 ^1 (dx/(√(1+x^4 )))  x^2 =tanb→2xdx=sec^2 b db  dx=((sec^2 b)/(2(√(tanb))))db  ∫_0 ^(π/4) ((sec^2 b)/(2(√(tanb)) ×secb))db=(1/2)∫_0 ^(π/4) (db/(√(sinbcosb)))=(1/(√2))∫_0 ^(π/4) (db/(√(sin2b)))  ★★now t=2b  dt=2db  I_2 =(1/(√2))∫_0 ^(π/4) (db/(√(sin2b)))=(1/(√2))∫_0 ^(π/2) (dt/(2(√(sint))))  =(1/(4(√2)))×2∫_0 ^(π/2) (sint)^(2×(1/4)−1) (cost)^(2×(1/2)−1) dt  =(1/(4(√2)))×((⌈((1/4))⌈((1/2)))/(⌈((1/2)+(1/4))))=I_2   I=I_1 ×I_2    =(1/4)×((⌈((3/4))⌈((1/2)))/(⌈((5/4))))×(1/(4(√2)))×((⌈((1/4))⌈((1/2)))/(⌈((3/4))))  formula ⌈((1/2))=(√π)   ⌈(p)⌈(1−p)=(p/(sinpπ))  I=(1/(16(√2)))×π×((⌈((1/4)))/(⌈(1+(1/4))))=(π/(16(√2)))×((⌈((1/4)))/((1/4)⌈((1/4))))  =(π/(4(√2)))  proved    note ⌈(n+1)=n⌈(n)  so ⌈((5/4))  =⌈(1+(1/4))=(1/4)⌈((1/4))

1)01x2dx1x4dx×01dx1+x4I=I1×I2I1=01x2dx1x4x2=sina2xdx=cosada0π2sinacosa×cosada2sina=120π2(sina)2×341(cosa)2×121dausinggammafunction20π2(sinα)2p1(cosα)2q1dα=(p)(q)(p+q)I1=14×20π2(sina)2×341(cosa)2×121da=14×(34)(12)(34+12)I2=01dx1+x4x2=tanb2xdx=sec2bdbdx=sec2b2tanbdb0π4sec2b2tanb×secbdb=120π4dbsinbcosb=120π4dbsin2bnowt=2bdt=2dbI2=120π4dbsin2b=120π2dt2sint=142×20π2(sint)2×141(cost)2×121dt=142×(14)(12)(12+14)=I2I=I1×I2=14×(34)(12)(54)×142×(14)(12)(34)formula(12)=π(p)(1p)=psinpπI=1162×π×(14)(1+14)=π162×(14)14(14)=π42provednote(n+1)=n(n)so(54)=(1+14)=14(14)

Answered by TANMAY PANACEA. last updated on 05/Apr/20

2)∫_0 ^(π/2)  (tan^2 θ+tan^5 θ)e^(−tan^2 θ) dθ  t=tan^2 θ  (dt/dθ)=2tanθ×sec^2 θ=2tanθ(1+tan^2 θ)=2(√t) (1+t)  ∫_0 ^∞ (t+t^(5/2) )e^(−t) ×2((√t) +t^(3/2) )dt  I=2∫_0 ^∞ e^(−t) (t^(3/2) +t^(5/2) +t^3 +t^4 )dt  formula ⌈(n)=∫_0 ^∞ e^(−x) ×x^(n−1) dx  (I/2)=∫_0 ^∞ e^(−t) .t^((5/2)−1) +∫_0 ^∞ e^(−t) .t^((7/2)−1) +∫_0 ^∞ e^(−t) .t^(4−1) +∫_0 ^∞ e^(−t) .t^(5−1)   =⌈((5/2))+⌈((7/2))+⌈(4)+⌈(5)  ⌈((5/2))=⌈((3/2)+1)=(3/2)×(1/2)×(√π) =((3(√π))/4)  ⌈((7/2))=(5/2)×(3/2)×(1/2)×(√π) =((15)/8)(√π)   ⌈(4)=3×2×1=6  ⌈(5)=4×3×2×1=24  I=2[((3(√π))/4)+((15(√π))/8)+6+24]  pls check...

2)0π2(tan2θ+tan5θ)etan2θdθt=tan2θdtdθ=2tanθ×sec2θ=2tanθ(1+tan2θ)=2t(1+t)0(t+t52)et×2(t+t32)dtI=20et(t32+t52+t3+t4)dtformula(n)=0ex×xn1dxI2=0et.t521+0et.t721+0et.t41+0et.t51=(52)+(72)+(4)+(5)(52)=(32+1)=32×12×π=3π4(72)=52×32×12×π=158π(4)=3×2×1=6(5)=4×3×2×1=24I=2[3π4+15π8+6+24]plscheck...

Commented by peter frank last updated on 15/Apr/20

correct sir thank you

correctsirthankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com