Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 88069 by Power last updated on 08/Apr/20

Commented by Power last updated on 08/Apr/20

⌊x⌋−greatest integer   x=⌊x⌋+{x}       0≤{x}<1

xgreatestintegerx=x+{x}0{x}<1

Commented by mathmax by abdo last updated on 08/Apr/20

A =∫_0 ^1  x{(1/x)}[(1/x)]dx  we have (1/x)=[(1/x)]+{(1/x)} ⇒  A =∫_0 ^1 x((1/x)−[(1/x)])[(1/x)]dx =∫_0 ^1 (1−x[(1/x)])[(1/x)]dx  we do the changement  (1/x) =t ⇒ A =−∫_1 ^(+∞) (1−(1/t)[t])[t] (−(dt/t^2 ))  =∫_1 ^(+∞)  ((1/t^2 )−(([t]^2 )/t^3 ))dt =∫_1 ^(+∞ ) (dt/t^2 )−∫_1 ^(+∞)  (([t]^2 )/t^3 )dt  but we have  ∫_1 ^(+∞)  (dt/t^2 ) =[−(1/t)]_1 ^(+∞) =1  ∫_1 ^(+∞)  (([t]^2 )/t^3 )dt =Σ_(n=1) ^∞  ∫_n ^(n+1)  (n^2 /t^3 )dt =Σ_(n=1) ^∞  n^2  ∫_n ^(n+1)  t^(−3)  dt  =Σ_(n=1) ^∞  n^2 [−(1/2)t^(−2) ]_n ^(n+1)  =−(1/2)Σ_(n=1) ^∞  n^2 {(1/((n+1)^2 ))−(1/n^2 )}  =−(1/2)Σ_(n=1) ^∞ ((n^2 /((n+1)^2 ))−1) =−(1/2)Σ_(n=1) ^∞ (((n^2 −(n^2 +2n+1))/((n+1)^2 )))  =−(1/2) Σ_(n=1) ^∞ ((−2n−1)/((n+1)^2 )) =Σ_(n=1) ^∞  ((2n+1)/(2(n+1)^2 ))  and this serie is divergente  because ((2n+1)/(2(n+1)^2 )) ∼(1/n)( n∼+∞)

A=01x{1x}[1x]dxwehave1x=[1x]+{1x}A=01x(1x[1x])[1x]dx=01(1x[1x])[1x]dxwedothechangement1x=tA=1+(11t[t])[t](dtt2)=1+(1t2[t]2t3)dt=1+dtt21+[t]2t3dtbutwehave1+dtt2=[1t]1+=11+[t]2t3dt=n=1nn+1n2t3dt=n=1n2nn+1t3dt=n=1n2[12t2]nn+1=12n=1n2{1(n+1)21n2}=12n=1(n2(n+1)21)=12n=1(n2(n2+2n+1)(n+1)2)=12n=12n1(n+1)2=n=12n+12(n+1)2andthisserieisdivergentebecause2n+12(n+1)21n(n+)

Answered by mahdi last updated on 08/Apr/20

(1/x)=[(1/x)]+{(1/x)}⇒x{(1/x)}[(1/x)]=x((1/x)−[(1/x)])[(1/x)]  =[(1/x)]−x[(1/x)]^2   ∫_0 ^1 x{(1/x)}[(1/x)]dx=∫_0 ^1 ([(1/x)]−x[(1/x)]^2 )dx=  Σ_(n=1) ^∞ ∫_(1/(n+1)) ^(1/n) ([(1/x)]−x[(1/x)]^2 )dx=  Σ_(n=1) ^∞ ∫_(1/(n+1)) ^(1/n) (n−xn^2 )dx=Σ_(n=1) ^∞ [nx−((x^2 n^2 )/2)]_(1/(n+1)) ^(1/n)   Σ_(n=1) ^∞ ((1/(n+1))−(1/(2(n+1)^2 )))=Σ_(n=1) ^∞ (((2n+1)/(2(n+1)^2 )))

1x=[1x]+{1x}x{1x}[1x]=x(1x[1x])[1x]=[1x]x[1x]201x{1x}[1x]dx=01([1x]x[1x]2)dx=n=11n+11n([1x]x[1x]2)dx=n=11n+11n(nxn2)dx=n=1[nxx2n22]1n+11nn=1(1n+112(n+1)2)=n=1(2n+12(n+1)2)

Commented by mahdi last updated on 08/Apr/20

i think:Σ_(n=1) ^∞ (((2n+1)/(2(n+1)^2 )))=+∞

ithink:n=1(2n+12(n+1)2)=+

Terms of Service

Privacy Policy

Contact: info@tinkutara.com