Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 88188 by mr W last updated on 08/Apr/20

Commented by mr W last updated on 08/Apr/20

Given: triangle ABC with side lengthes                  a, b, c.                 P is midpoint of BC.  Find:   perimeter of inscribed triangle                  PQR with the smallest                   perimeter.

Given:triangleABCwithsidelengthesa,b,c.PismidpointofBC.Find:perimeterofinscribedtrianglePQRwiththesmallestperimeter.

Commented by ajfour last updated on 09/Apr/20

Commented by ajfour last updated on 09/Apr/20

let ∠A=α , ∠B=β , ∠C=γ ,  ∠QPC=θ,   p(slope of AB′)=tan (π−2γ−β)  tan θ=m, tan β=q,  A(h,k)  AR=BR′ = l  eq. of PQ:   y=m(x−a/2)  eq. of A ′B :   y=−qx  eq. of AB′ :  y−k=p(x−h)  for R′_(−)   m(x−(a/2))=−qx  x_(R′) =((m(a/2))/(q+m)) ,  y_(R′) =−((qm(a/2))/(q+m))  for R_(−)   m(x−a/2)=k+p(x−h)  x_R =((k−ph+m(a/2))/(m−p))  y_R =m(((k−ph+p(a/2))/(m−p)))  l^2 =(BR′)^2 =[((m(a/2))/(q+m))]^2 (1+q^2 )     =(AR)^2 = (((k−mh+m(a/2))/(m−p)))^2             +{((m[−ph+p(a/2)]+pk)/(m−p))}^2   from above eq. we solve for m.  Then min( perimeter △PQR )       = R′R .

letA=α,B=β,C=γ,QPC=θ,p(slopeofAB)=tan(π2γβ)tanθ=m,tanβ=q,A(h,k)AR=BR=leq.ofPQ:y=m(xa/2)eq.ofAB:y=qxeq.ofAB:yk=p(xh)forRm(xa2)=qxxR=m(a/2)q+m,yR=qm(a/2)q+mforRm(xa/2)=k+p(xh)xR=kph+m(a/2)mpyR=m(kph+p(a/2)mp)l2=(BR)2=[m(a/2)q+m]2(1+q2)=(AR)2=(kmh+m(a/2)mp)2+{m[ph+p(a/2)]+pkmp}2fromaboveeq.wesolveform.Thenmin(perimeterPQR)=RR.

Commented by ajfour last updated on 09/Apr/20

couldn′t compress it Sir!

couldntcompressitSir!

Commented by mr W last updated on 09/Apr/20

thank you sir! it is the geometric way  which i prefer. i′ll try in a similar way.

thankyousir!itisthegeometricwaywhichiprefer.illtryinasimilarway.

Answered by mr W last updated on 09/Apr/20

Commented by mr W last updated on 09/Apr/20

let ∠A=α, ∠B=β, ∠C=γ  we construct the image of side BC  about AB and about AC. P^  ′ and P ′′  are the corresponding image of P.  BP ′=BP=(a/2), CP ′′=CP=(a/2)  P ′R=PR, QP ′′=QP  perimeter of ΔPQR=PQ+QR+PR  =P ′R+RQ+QP ′′  we see it is minimum, if P ′,R,Q,P ′′  are collinear, then  perimeter of ΔPQR=P ′P ′′    ϕ=π−2β  φ=π−2γ  θ=π−ϕ−φ=2(β+γ)−π=π−2α  ((DB)/(sin φ))=((DC)/(sin ϕ))=((BC)/(sin θ))  ⇒DB=((sin φ)/(sin θ))×BC=((sin 2γ)/(sin 2α))×a  ⇒DC=((sin ϕ)/(sin θ))×BC=((sin 2β)/(sin 2α))×a  DP ′=DB+BP ′=((sin 2γ)/(sin 2α))×a+(a/2)=((1/2)+((sin 2γ)/(sin 2α)))a  DP ′′=DC+CP ′′=((sin 2β)/(sin 2α))×a+(a/2)=((1/2)+((sin 2β)/(sin 2α)))a    let l=P ′P ′′  l^2 =((1/2)+((sin 2β)/(sin 2α)))^2 a^2 +((1/2)+((sin 2γ)/(sin 2α)))^2 a^2 −2((1/2)+((sin 2β)/(sin 2α)))((1/2)+((sin 2γ)/(sin 2α)))a^2  cos θ  l^2 =a^2 {((1/2)+((sin 2β)/(sin 2α)))^2 +((1/2)+((sin 2γ)/(sin 2α)))^2 +2((1/2)+((sin 2β)/(sin 2α)))((1/2)+((sin 2γ)/(sin 2α))) cos 2α}    minimum perimeter of ΔPQR=P ′P ′′=l  =a(√(((1/2)+((sin 2β)/(sin 2α)))^2 +((1/2)+((sin 2γ)/(sin 2α)))^2 +2 cos 2α ((1/2)+((sin 2β)/(sin 2α)))((1/2)+((sin 2γ)/(sin 2α)))))

letA=α,B=β,C=γweconstructtheimageofsideBCPrime causes double exponent: use braces to clarifyarethecorrespondingimageofP.BP=BP=a2,CP=CP=a2PR=PR,QP=QPperimeterofΔPQR=PQ+QR+PR=PR+RQ+QPweseeitisminimum,ifP,R,Q,Parecollinear,thenperimeterofΔPQR=PPφ=π2βϕ=π2γθ=πφϕ=2(β+γ)π=π2αDBsinϕ=DCsinφ=BCsinθDB=sinϕsinθ×BC=sin2γsin2α×aDC=sinφsinθ×BC=sin2βsin2α×aDP=DB+BP=sin2γsin2α×a+a2=(12+sin2γsin2α)aDP=DC+CP=sin2βsin2α×a+a2=(12+sin2βsin2α)aletl=PPl2=(12+sin2βsin2α)2a2+(12+sin2γsin2α)2a22(12+sin2βsin2α)(12+sin2γsin2α)a2cosθl2=a2{(12+sin2βsin2α)2+(12+sin2γsin2α)2+2(12+sin2βsin2α)(12+sin2γsin2α)cos2α}minimumperimeterofΔPQR=PP=l=a(12+sin2βsin2α)2+(12+sin2γsin2α)2+2cos2α(12+sin2βsin2α)(12+sin2γsin2α)

Commented by ajfour last updated on 09/Apr/20

Superb! Sir. Its smooth and   very nice solution, i′d delayed  following it thinking′ it wd be  tough for me to comprehend;  i was wrong, thank you Sir.

Superb!Sir.Itssmoothandverynicesolution,iddelayedfollowingitthinkingitwdbetoughformetocomprehend;iwaswrong,thankyouSir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com