All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 88388 by M±th+et£s last updated on 10/Apr/20
Answered by mind is power last updated on 10/Apr/20
49sec2(x)+28tan(x)+9sin2(x)−6sin(x)−44=49(1+tg2(x))+28tg(x)+(3sin(x)−1)2−45=4+49tg2(x)+28tg(x)+(3sin(x)−1)2=(7tg(x)+2)2+(3sin(x)−1)221sin(x)+6cos(x)−21tg(x)sec(x)+7sec2(x)=21sin(x)+6cos(x)−21sin(x)(1+tg2(x))+7(1+tg2(x))=6cos(x)+7+7tg2(x)(1−3sin(x))=∫7tg2(1−3sin(x))+6cos(x)+7(7tg(x)+2)2+(3sin(x)−1)2dx=∫7tg2(1−3sin(x))+6cos(x)+7(1−3sin(x))21+(7tg(x)+2−3sin(x)+1)2dx7tg2(x)(1−3sin(x))+6cos(x)+7=7tg2(x)(1−3sin(x))+7(1−3sin(x))+3cos(x)(7tg(x)+2)=7(1+tg2(x))(1−3sin(x))+3cos(x)(7tg(x)+2)⇔∫7d(7tg(x)+2)(1−3sin(x))−d(1−3sin(x))(7tg(x)+2)(1−3sin(x))21+(7tg(x)+21−3sin(x))2dx=∫d(7tg(x)+21−3sin(x))1+(7tg(x)+21−3sin(x))2dx=tan−1(7tg(x)+21−3sin(x))+c
Commented by john santu last updated on 10/Apr/20
amazingsir
Commented by M±th+et£s last updated on 10/Apr/20
greatsolution
Terms of Service
Privacy Policy
Contact: info@tinkutara.com