Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 88642 by M±th+et£s last updated on 11/Apr/20

Commented by ajfour last updated on 11/Apr/20

x=(π/4) ,  of course qualifies.  both terms are zero.

x=π4,ofcoursequalifies.bothtermsarezero.

Commented by M±th+et£s last updated on 11/Apr/20

yes sir but how can we get the value

yessirbuthowcanwegetthevalue

Answered by ajfour last updated on 11/Apr/20

((ln tan x)/(ln cos x))+((ln cot x)/(ln sin x))=0  ((ln sin x−ln cos x)/(ln cos x))+((ln cos x−ln sin x)/(ln sin x))=0  ((ln sin x)/(ln cos x))−1+((ln cos x)/(ln sin x))−1=0  let   ((ln sin x)/(ln cos x))=t  ⇒  t−1+(1/t)−1=0  t+(1/t)=2  ⇒ (t^2 −2t+1)=0  (t−1)^2 =0    ⇒  t=1  ⇒  ((ln sin x)/(ln cos x))=1  ⇒  ln sin x−ln cos x=0  ⇒   ln (((sin x)/(cos x)))=0  tan x=1   ⇒  x=(π/4) .  can that do ?

lntanxlncosx+lncotxlnsinx=0lnsinxlncosxlncosx+lncosxlnsinxlnsinx=0lnsinxlncosx1+lncosxlnsinx1=0letlnsinxlncosx=tt1+1t1=0t+1t=2(t22t+1)=0(t1)2=0t=1lnsinxlncosx=1lnsinxlncosx=0ln(sinxcosx)=0tanx=1x=π4.canthatdo?

Commented by M±th+et£s last updated on 11/Apr/20

correct  but can you explain why log_(cos(x)) tan(x)=((ln(tan(x)))/(ln(cos(x)))  and thank you

correctbutcanyouexplainwhylogcos(x)tan(x)=ln(tan(x))ln(cos(x)andthankyou

Commented by ajfour last updated on 11/Apr/20

basic logarithm property.    log_( b) x=t  ⇒  x=b^t    granted   log_( b) x=((log _c x)/(log _c b)) = t  ⇒   log _c x=tlog _c b  ⇒   log _c x=log _c b^t   ⇒   x=b^t  .  i can just explain this way.

basiclogarithmproperty.logbx=tx=btgrantedlogbx=logcxlogcb=tlogcx=tlogcblogcx=logcbtx=bt.icanjustexplainthisway.

Commented by M±th+et£s last updated on 12/Apr/20

and i think its (π/4)+2kπ

andithinkitsπ4+2kπ

Commented by M±th+et£s last updated on 12/Apr/20

yes thank you

yesthankyou

Commented by ajfour last updated on 12/Apr/20

yes, i dint care, for i thought,  you wd infer that.

yes,idintcare,forithought,youwdinferthat.

Commented by M±th+et£s last updated on 12/Apr/20

thank you and god bless you

thankyouandgodblessyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com