Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 89384 by nimnim last updated on 17/Apr/20

Commented by mathmax by abdo last updated on 17/Apr/20

let try another way  we consider the diffeomorphism  (u,v)→(x,y) /x−y=u and x+y =v ⇒x =((u+v)/2) andy=((−u+v)/2)  ⇒ϕ(u,v)=(ϕ_1 (u,v),ϕ_2 (u,v))=(x,y)=((u/2)+(v/2),−(u/2)+(v/2))  we have (1/2)≤x≤1 and  (1/2)≤y≤1 ⇒1≤x+y≤2⇒v∈[1,2]  −1≤−y≤−(1/2) ⇒−(1/2)≤x−y≤(1/2) ⇒u∈[−(1/2),(1/2)]  M_j (ϕ)= ((((∂ϕ_1 /∂u)               (∂ϕ_1 /∂v))),(((∂ϕ_2 /∂u)                (∂ϕ_2 /∂v))) )=   ((((1/2)        (1/2))),((−(1/2)      (1/2))) )  ∣detM_j (ϕ)∣ =(1/2)  ∫∫_D f(x,y)dxdy =∫∫_w foϕ(u,v)∣J_ϕ ∣du dv  ∫∫_(u∈[−(1/2),(1/2)]and v∈[1,2])     (u/v)×(1/2)du dv  =(1/2) ∫_1 ^2  (∫_(−(1/2)) ^(1/2) udu)(dv/v) =(1/2)∫_1 ^2 [(u^2 /2)]_(−(1/2)) ^(1/2) (dv/v) =0

lettryanotherwayweconsiderthediffeomorphism(u,v)(x,y)/xy=uandx+y=vx=u+v2andy=u+v2φ(u,v)=(φ1(u,v),φ2(u,v))=(x,y)=(u2+v2,u2+v2)wehave12x1and12y11x+y2v[1,2]1y1212xy12u[12,12]Mj(φ)=(φ1uφ1vφ2uφ2v)=(12121212)detMj(φ)=12Df(x,y)dxdy=wfoφ(u,v)Jφdudvu[12,12]andv[1,2]uv×12dudv=1212(1212udu)dvv=1212[u22]1212dvv=0

Commented by Tony Lin last updated on 17/Apr/20

∫_(1/2) ^1 ∫_(1/2) ^1 ((x−y)/(x+y))dxdy  =∫_(1/2) ^1 ∫_(1/2) ^1 (1−((2y)/(x+y)))dxdy  =∫_(1/2) ^1 {[x−2aln∣x+y∣]_(1/2) ^1 }dy  =∫_(1/2) ^1 ((1/2)+2yln∣(((1/2)+y)/(1+y))∣)dy  =(1/4)−2∫_(1/2) ^1 yln∣(((1/2)+y)/(1+y))∣dy  y>0→ln∣(((1/2)+y)/(1+y))∣=ln((((1/2)+y)/(1+y)))  ∫_(1/2) ^1 yln((((1/2)+y)/(1+y)))dy  =(1/2)y^2 ln((((1/2)+y)/(1+y)))∣_(1/2) ^1 −(1/2)∫_(1/2) ^1 (y^2 /(2y^2 +3y+1))dy  =−(1/8)ln(((512)/(243)))−(1/2)∫_(1/2) ^1 (y^2 /(2y^2 +3y+1))dy  =−(1/8)ln(((512)/(243)))−(1/2)∫_(1/2) ^1 [(1/(2(2y+1)))−(1/(y+1))+(1/2)]  =−(1/8)ln(((512)/(243)))−(1/8)ln((3/2))+(1/2)ln((4/3))−(1/8)  =−(1/8)  ∫_(1/2) ^1 ∫_(1/2) ^1 ((x−y)/(x+y)) dxdy=(1/4)−2×(1/8)=0

121121xyx+ydxdy=121121(12yx+y)dxdy=121{[x2alnx+y]121}dy=121(12+2yln12+y1+y)dy=142121yln12+y1+ydyy>0ln12+y1+y∣=ln(12+y1+y)121yln(12+y1+y)dy=12y2ln(12+y1+y)12112121y22y2+3y+1dy=18ln(512243)12121y22y2+3y+1dy=18ln(512243)12121[12(2y+1)1y+1+12]=18ln(512243)18ln(32)+12ln(43)18=18121121xyx+ydxdy=142×18=0

Commented by nimnim last updated on 17/Apr/20

Thank you Sir.

ThankyouSir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com