All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 89384 by nimnim last updated on 17/Apr/20
Commented by mathmax by abdo last updated on 17/Apr/20
lettryanotherwayweconsiderthediffeomorphism(u,v)→(x,y)/x−y=uandx+y=v⇒x=u+v2andy=−u+v2⇒φ(u,v)=(φ1(u,v),φ2(u,v))=(x,y)=(u2+v2,−u2+v2)wehave12⩽x⩽1and12⩽y⩽1⇒1⩽x+y⩽2⇒v∈[1,2]−1⩽−y⩽−12⇒−12⩽x−y⩽12⇒u∈[−12,12]Mj(φ)=(∂φ1∂u∂φ1∂v∂φ2∂u∂φ2∂v)=(1212−1212)∣detMj(φ)∣=12∫∫Df(x,y)dxdy=∫∫wfoφ(u,v)∣Jφ∣dudv∫∫u∈[−12,12]andv∈[1,2]uv×12dudv=12∫12(∫−1212udu)dvv=12∫12[u22]−1212dvv=0
Commented by Tony Lin last updated on 17/Apr/20
∫121∫121x−yx+ydxdy=∫121∫121(1−2yx+y)dxdy=∫121{[x−2aln∣x+y∣]121}dy=∫121(12+2yln∣12+y1+y∣)dy=14−2∫121yln∣12+y1+y∣dyy>0→ln∣12+y1+y∣=ln(12+y1+y)∫121yln(12+y1+y)dy=12y2ln(12+y1+y)∣121−12∫121y22y2+3y+1dy=−18ln(512243)−12∫121y22y2+3y+1dy=−18ln(512243)−12∫121[12(2y+1)−1y+1+12]=−18ln(512243)−18ln(32)+12ln(43)−18=−18∫121∫121x−yx+ydxdy=14−2×18=0
Commented by nimnim last updated on 17/Apr/20
ThankyouSir.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com