Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 89596 by A8;15: last updated on 18/Apr/20

Commented by john santu last updated on 18/Apr/20

(√(x/(1−x))) = t ⇒ x = (t^2 /(t^2 +1))  dx = ((2t)/((t^2 +1)^2 )) dt ]   ∫ ((2t^2 )/((t^2 +1)^2 )) dt =  ∫ t(((d(t^2 +1))/((t^2 +1)^2 ))) = [ by parts ]  −(t/(t^2 +1)) + ∫ (dt/(t^2 +1)) =   −(t/(t^2 +1)) + tan^(−1) (t) + c =   −((√(x/(1−x)))/(1/(1−x))) + tan^(−1) ((√(x/(1−x)))) + c   −(√(x−x^2 )) + tan^(−1) ((√(x/(1−x)))) + c

x1x=tx=t2t2+1dx=2t(t2+1)2dt]2t2(t2+1)2dt=t(d(t2+1)(t2+1)2)=[byparts]tt2+1+dtt2+1=tt2+1+tan1(t)+c=x1x11x+tan1(x1x)+cxx2+tan1(x1x)+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com