Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 89913 by M±th+et£s last updated on 20/Apr/20

Commented by M±th+et£s last updated on 20/Apr/20

prove that

provethat

Answered by maths mind last updated on 20/Apr/20

1+i=(√2)e^(i(π/4)) ⇒  =Σ_(k≥1) ((((√2))^k^2  e^(i((k^2 π)/4)) )/(((√2))^k^2  k^2 ))  =Σ_(k≥1) (cos(((k^2 π)/4))+isin(((k^2 π)/4))).(1/k^2 )  =Σ_(k≥1) ((cos(((k^2 π)/4)))/k^2 )+iΣ_(k≥1) ((sin(((k^2 π)/4)))/k^2 )  =Σ_(k=0) ^(+∞) ((cos((k^2 π+kπ+(π/4))))/((2k+1)^2 ))+Σ_(k≥1) ((cos(k^2 π))/(4k^2 ))+iΣ_(k=0) ((sin(k^2 π+kπ+(π/4)))/((2k+1)^2 ))  =Σ_(k≥0) (((−1)^(k(k+1)) )/((2k+1)^2 )).((√2)/2)+Σ_(k≥1) (((−1)^k )/(4k^2 ))+iΣ_(k≥0) ((√2)/2).(1/((2k+1)^2 ))  =Σ_(k≥0) (1/((2k+1)^2 )).((√2)/2)+Σ_(k≥1) (((−1)^k )/(4k^2 ))+(i/(√2))Σ_(k≥0) (1/((2k+1)^2 ))  =((√2)/2)((π^2 /8))+(1/(16)).(π^2 /6)−(π^2 /(32))+(i/(√2)).(π^2 /8)  =((π^2 (√2))/(16))−(π^2 /(48))+((iπ^2 )/(8(√2)))=(((3(√2)−1)π^2 )/(48))+((iπ^2 )/(8(√2)))

1+i=2eiπ4=k1(2)k2eik2π4(2)k2k2=k1(cos(k2π4)+isin(k2π4)).1k2=k1cos(k2π4)k2+ik1sin(k2π4)k2=+k=0cos((k2π+kπ+π4))(2k+1)2+k1cos(k2π)4k2+ik=0sin(k2π+kπ+π4)(2k+1)2=k0(1)k(k+1)(2k+1)2.22+k1(1)k4k2+ik022.1(2k+1)2=k01(2k+1)2.22+k1(1)k4k2+i2k01(2k+1)2=22(π28)+116.π26π232+i2.π28=π2216π248+iπ282=(321)π248+iπ282

Commented by M±th+et£s last updated on 20/Apr/20

god bless you sir.  are there any books you recommend  reading?

godblessyousir.arethereanybooksyourecommendreading?

Commented by maths mind last updated on 20/Apr/20

Almost impposible Series and integral   i will chek the right titel and comback

AlmostimpposibleSeriesandintegraliwillchektherighttitelandcomback

Commented by M±th+et£s last updated on 20/Apr/20

thank you verry much sir

thankyouverrymuchsir

Commented by M±th+et£s last updated on 20/Apr/20

you mean (Paul J.Nahin )book

youmean(PaulJ.Nahin)book

Terms of Service

Privacy Policy

Contact: info@tinkutara.com