Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 90069 by ajfour last updated on 21/Apr/20

Commented by ajfour last updated on 21/Apr/20

dont know why i get two answers;  (r/R) ≈ 0.49172, 0.39253

dontknowwhyigettwoanswers;rR0.49172,0.39253

Commented by ajfour last updated on 21/Apr/20

Find r/R.

Findr/R.

Commented by ajfour last updated on 21/Apr/20

mrW Sir, please attempt..

mrWSir,pleaseattempt..

Answered by mr W last updated on 21/Apr/20

Commented by mr W last updated on 21/Apr/20

with λ=(R/r)  α+β=(π/2)  sin (β/2)=(r/(R−r))=(1/(λ−1))  ⇒cos (β/2)=(√(1−(1/((λ−1)^2 ))))=((√(λ^2 −2λ))/(λ−1))  ⇒tan (β/2)=(1/(√(λ^2 −2λ)))  ⇒cos β=1−(2/((λ−1)^2 ))  OB=(R/(cos β))  OC=(√((R+r)^2 −r^2 ))=(√(R^2 +2Rr))  CB=(R/(cos β))−(√(R^2 +2Rr))  tan (α/2)=(r/((R/(cos β))−(√(R^2 +2Rr))))  ((1−tan (β/2))/(1+tan (β/2)))=(1/((λ/(cos β))−(√(λ^2 +2λ))))  (2/(1+(1/(√(λ^2 −2λ)))))−1=(1/((λ/(1−(2/((λ−1)^2 ))))−(√(λ^2 +2λ))))  ⇒(((√(λ^2 −2λ))−1)/(1+(√(λ^2 −2λ))))=((λ^2 −2λ−1)/(λ(λ−1)^2 −(λ^2 −2λ−1)(√(λ^2 +2λ))))  ⇒(1+(√(λ^2 −2λ)))^2 =λ(λ−1)^2 −(λ^2 −2λ−1)(√(λ^2 +2λ))  ⇒2(√(λ^2 −2λ))+(λ^2 −2λ−1)(√(λ^2 +2λ))=(λ−1)^3   ⇒λ=(R/r)=2.4142 or 2.5475  ⇒(r/R)=0.4142 or 0.3925

withλ=Rrα+β=π2sinβ2=rRr=1λ1cosβ2=11(λ1)2=λ22λλ1tanβ2=1λ22λcosβ=12(λ1)2OB=RcosβOC=(R+r)2r2=R2+2RrCB=RcosβR2+2Rrtanα2=rRcosβR2+2Rr1tanβ21+tanβ2=1λcosβλ2+2λ21+1λ22λ1=1λ12(λ1)2λ2+2λλ22λ11+λ22λ=λ22λ1λ(λ1)2(λ22λ1)λ2+2λ(1+λ22λ)2=λ(λ1)2(λ22λ1)λ2+2λ2λ22λ+(λ22λ1)λ2+2λ=(λ1)3λ=Rr=2.4142or2.5475rR=0.4142or0.3925

Commented by ajfour last updated on 21/Apr/20

Sir, i think,  only λ=2.54754  is correct, and thank you Sir.

Sir,ithink,onlyλ=2.54754iscorrect,andthankyouSir.

Answered by ajfour last updated on 21/Apr/20

Commented by ajfour last updated on 21/Apr/20

β=(π/4)+α  cos β=(r/(R−r)) ,   and if  (R/r)=λ  cos β=(1/(λ−1))  ⇒ tan β=(√(λ^2 −2λ))  tan 2α=(R/((r/(tan α))+2(√(Rr))))  ⇒  ((2tan α)/(1−tan^2 α))=((λtan α)/(1+2(√λ)tan α))  ⇒ λ−λtan^2 α=2+4(√λ)tan α  ⇒  ((√λ)tan α+2)^2 =λ+2  ⇒  tan α=(((√(λ+2))−2)/(√λ))     tan β=((1+tan α)/(1−tan α))    (√(λ^2 −2λ))=((1+((((√(λ+2))−2)/(√λ))))/(1−((((√(λ+2))−2)/(√λ)))))  ⇒ (√(λ(λ−2)))=(((√λ)+(√(λ+2))−2)/((√λ)+2−(√(λ+2))))  ⇒  λ=(R/r)≈ 2.54754 .

β=π4+αcosβ=rRr,andifRr=λcosβ=1λ1tanβ=λ22λtan2α=Rrtanα+2Rr2tanα1tan2α=λtanα1+2λtanαλλtan2α=2+4λtanα(λtanα+2)2=λ+2tanα=λ+22λtanβ=1+tanα1tanαλ22λ=1+(λ+22λ)1(λ+22λ)λ(λ2)=λ+λ+22λ+2λ+2λ=Rr2.54754.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com