Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 90158 by I want to learn more last updated on 21/Apr/20

Commented by I want to learn more last updated on 21/Apr/20

The question is prove that

Thequestionisprovethat

Commented by abdomathmax last updated on 22/Apr/20

we have Γ(x).Γ(1−x)=(π/(sin(πx))) ⇒  ∫_0 ^1 lnΓ(x)dx +∫_0 ^1 lnΓ(1−x)dx =∫^1 _0 ln((π/(sin(πx))))dx  but ∫_0 ^1 lnΓ(1−x)dx =_(1−x=t)   dt∫_0 ^1 lnΓ(t)dt ⇒  2∫_0 ^1 ln(Γ(x))dx =ln(π)−∫_0 ^1 ln(sin(πx))dx  ∫_0 ^1 ln(sin(πx))dx =_(πx=t)   (1/π)∫_0 ^π ln(sint) dt  =(1/π) { ∫_0 ^(π/2) ln(sint)dt +∫_(π/2) ^π  ln(sint)dt→(t=(π/2)+u)}   =(1/π){ ∫_0 ^(π/2) ln(sint)dt +∫_0 ^(π/2) ln(cosu)du}  =(1/π){−(π/2)ln(2)−(π/2)ln(2) =(1/π)(−πln(2))  −ln(2) ⇒2∫_0 ^1 ln(Γ(x)dx =ln(π)+ln(2)=ln(2π) ⇒  ∫_0 ^1 ln(Γ(x))dx =(1/2)ln(2π)=ln((√(2π)))

wehaveΓ(x).Γ(1x)=πsin(πx)01lnΓ(x)dx+01lnΓ(1x)dx=01ln(πsin(πx))dxbut01lnΓ(1x)dx=1x=tdt01lnΓ(t)dt201ln(Γ(x))dx=ln(π)01ln(sin(πx))dx01ln(sin(πx))dx=πx=t1π0πln(sint)dt=1π{0π2ln(sint)dt+π2πln(sint)dt(t=π2+u)}=1π{0π2ln(sint)dt+0π2ln(cosu)du}=1π{π2ln(2)π2ln(2)=1π(πln(2))ln(2)201ln(Γ(x)dx=ln(π)+ln(2)=ln(2π)01ln(Γ(x))dx=12ln(2π)=ln(2π)

Answered by maths mind last updated on 21/Apr/20

∫_a ^b f(x)dx=∫_a ^b f(a+b−x)dx  ∫_0 ^1 ln(Γ(x))dx=∫_0 ^1 ln(Γ(1−x))dx  ⇒∫_0 ^1 ln(Γ(x))dx=(1/2)∫_0 ^1 ln(Γ(1−x)Γ(x))dx  =(1/2)∫_0 ^1 ln((π/(sin(πx))))dx=ln((√π))−(1/2)∫_0 ^1 ln(sin(πx))dx..E  ∫_0 ^1 ln(sin(πx))dx  =(1/π)∫_0 ^π ln(sin(r))dr  ∫_0 ^π ln(sin(r))dr=∫_0 ^(π/2) ln(((sin(2r))/2))dr  =∫_0 ^π ln(sin(x))(dx/2)−(π/2)ln(2)  ⇒∫_0 ^π ln(sin(x))dx=−πln(2)  E=ln((√π))−(1/(2π)).−πln(2)=ln((√π))+ln((√2))  =ln((√(2π)))=∫_0 ^1 ln(Γ(x))dx

abf(x)dx=abf(a+bx)dx01ln(Γ(x))dx=01ln(Γ(1x))dx01ln(Γ(x))dx=1201ln(Γ(1x)Γ(x))dx=1201ln(πsin(πx))dx=ln(π)1201ln(sin(πx))dx..E01ln(sin(πx))dx=1π0πln(sin(r))dr0πln(sin(r))dr=0π2ln(sin(2r)2)dr=0πln(sin(x))dx2π2ln(2)0πln(sin(x))dx=πln(2)E=ln(π)12π.πln(2)=ln(π)+ln(2)=ln(2π)=01ln(Γ(x))dx

Commented by I want to learn more last updated on 21/Apr/20

Thanks sir

Thankssir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com