Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 91303 by 174 last updated on 29/Apr/20

Commented by mathmax by abdo last updated on 29/Apr/20

A =∫_0 ^(π/2) ln(1+cos^2 (2x))dx ⇒A =∫_0 ^(π/2) ln(1+((1+cos(4x))/2))dx  =∫_0 ^(π/2) ln(3+cos(4x))dx−(π/2)ln(2) we have  ∫_0 ^(π/2) ln(3+cos(4x))dx =(π/2)ln(3)+∫_0 ^(π/2) ln(1+(1/3)cos(4x))dx  (4x=t)  =(π/2)ln(3) +(1/4)∫_0 ^π ln(1+(1/3)cost) ⇒  A =(π/2)ln(3)−(π/2)ln(2) +(1/4)∫_0 ^π ln(1+(1/3)cost)dt let  f(a) =∫_0 ^π ln(1+acost)dt   with 0<a<1  we have f^′ (a) =∫_0 ^π   ((cost)/(1+acost))dt =(1/a)∫_0 ^π  ((1+acost−1)/(1+acost))dt  =(π/a)−(1/a) ∫_0 ^π  (dt/(1+acost))  we have   ∫_0 ^π  (dt/(1+acost)) =_(tan((t/2))=u)   ∫_0 ^∞   ((2du)/((1+u^2 )(1+a×((1−u^2 )/(1+u^2 )))))  =∫_0 ^∞   ((2du)/(1+u^2 +a−au^2 )) =∫_0 ^∞   ((2du)/((1−a)u^2  +1+a))=(2/(1−a))∫_0 ^∞ (du/(u^2  +((1+a)/(1−a))))  =_(u=(√((1+a)/(1−a)))z)     (2/(1−a))∫_0 ^∞   (1/(((1+a)/(1−a))(1+z^2 )))×(√((1+a)/(1−a)))dz  =(2/(√(1−a^2 )))∫_0 ^∞ (dz/(1+z^2 )) =(2/(√(1−a^2 )))×(π/2) =(π/(√(1−a^2 ))) ⇒  f^′ (a) =(π/a)−(π/(a(√(1−a^2 )))) ⇒f(a) =πln(a)−π ∫   (da/(a(√(1−a^2 )))) +c  ∫  (da/(a(√(1−a^2 )))) =_(a =sinx)    ∫  ((cosxdx)/(sinx×cosx)) =∫(dx/(sinx))  =_(tan((x/2))=u)     ∫ ((2du)/((1+u^2 )×((2u)/(1+u^2 )))) =∫(du/u) =ln∣u∣=ln∣tan((x/2))∣  =ln∣tan((1/2)arcsina)∣ ⇒  f(a) =πln(a)−πln∣tan((1/2)arcsina)∣ +c  f(a) =πln((a/(∣tan((1/2)arcsina)∣))) +c  (1/2)arcsina ∼(a/2) ⇒tan(((arcsina)/2))∼(a/2) ⇒f(a) ∼πln(2)+c (a∼0)  ⇒lim_(a→0) f(a) =0 =πln(2)+c ⇒c =−πln(2) ⇒  f(a) =πln(a)−πln(2)−πln∣tan((1/2)arcsina)∣ so  ∫_0 ^π ln(1+(1/3)cost)dt =f((1/3))=−πln(3)−πln(2)  −πln∣tan((1/2)arcsin((1/3))∣ ⇒  A =(π/2)ln(3)−(π/2)ln(2)−(π/4)ln(3)−(π/4)ln(2)−(π/4)ln∣tan((1/2)arcsin((1/3))∣  A =(π/4)ln(3)−((3π)/4)ln(2)−(π/4)ln∣tan((1/2)arcsin((1/3))∣

A=0π2ln(1+cos2(2x))dxA=0π2ln(1+1+cos(4x)2)dx=0π2ln(3+cos(4x))dxπ2ln(2)wehave0π2ln(3+cos(4x))dx=π2ln(3)+0π2ln(1+13cos(4x))dx(4x=t)=π2ln(3)+140πln(1+13cost)A=π2ln(3)π2ln(2)+140πln(1+13cost)dtletf(a)=0πln(1+acost)dtwith0<a<1wehavef(a)=0πcost1+acostdt=1a0π1+acost11+acostdt=πa1a0πdt1+acostwehave0πdt1+acost=tan(t2)=u02du(1+u2)(1+a×1u21+u2)=02du1+u2+aau2=02du(1a)u2+1+a=21a0duu2+1+a1a=u=1+a1az21a011+a1a(1+z2)×1+a1adz=21a20dz1+z2=21a2×π2=π1a2f(a)=πaπa1a2f(a)=πln(a)πdaa1a2+cdaa1a2=a=sinxcosxdxsinx×cosx=dxsinx=tan(x2)=u2du(1+u2)×2u1+u2=duu=lnu∣=lntan(x2)=lntan(12arcsina)f(a)=πln(a)πlntan(12arcsina)+cf(a)=πln(atan(12arcsina))+c12arcsinaa2tan(arcsina2)a2f(a)πln(2)+c(a0)lima0f(a)=0=πln(2)+cc=πln(2)f(a)=πln(a)πln(2)πlntan(12arcsina)so0πln(1+13cost)dt=f(13)=πln(3)πln(2)πlntan(12arcsin(13)A=π2ln(3)π2ln(2)π4ln(3)π4ln(2)π4lntan(12arcsin(13)A=π4ln(3)3π4ln(2)π4lntan(12arcsin(13)

Commented by 174 last updated on 30/Apr/20

thanks alot

Commented by mathmax by abdo last updated on 30/Apr/20

you are welcome

youarewelcome

Terms of Service

Privacy Policy

Contact: info@tinkutara.com