All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 91303 by 174 last updated on 29/Apr/20
Commented by mathmax by abdo last updated on 29/Apr/20
A=∫0π2ln(1+cos2(2x))dx⇒A=∫0π2ln(1+1+cos(4x)2)dx=∫0π2ln(3+cos(4x))dx−π2ln(2)wehave∫0π2ln(3+cos(4x))dx=π2ln(3)+∫0π2ln(1+13cos(4x))dx(4x=t)=π2ln(3)+14∫0πln(1+13cost)⇒A=π2ln(3)−π2ln(2)+14∫0πln(1+13cost)dtletf(a)=∫0πln(1+acost)dtwith0<a<1wehavef′(a)=∫0πcost1+acostdt=1a∫0π1+acost−11+acostdt=πa−1a∫0πdt1+acostwehave∫0πdt1+acost=tan(t2)=u∫0∞2du(1+u2)(1+a×1−u21+u2)=∫0∞2du1+u2+a−au2=∫0∞2du(1−a)u2+1+a=21−a∫0∞duu2+1+a1−a=u=1+a1−az21−a∫0∞11+a1−a(1+z2)×1+a1−adz=21−a2∫0∞dz1+z2=21−a2×π2=π1−a2⇒f′(a)=πa−πa1−a2⇒f(a)=πln(a)−π∫daa1−a2+c∫daa1−a2=a=sinx∫cosxdxsinx×cosx=∫dxsinx=tan(x2)=u∫2du(1+u2)×2u1+u2=∫duu=ln∣u∣=ln∣tan(x2)∣=ln∣tan(12arcsina)∣⇒f(a)=πln(a)−πln∣tan(12arcsina)∣+cf(a)=πln(a∣tan(12arcsina)∣)+c12arcsina∼a2⇒tan(arcsina2)∼a2⇒f(a)∼πln(2)+c(a∼0)⇒lima→0f(a)=0=πln(2)+c⇒c=−πln(2)⇒f(a)=πln(a)−πln(2)−πln∣tan(12arcsina)∣so∫0πln(1+13cost)dt=f(13)=−πln(3)−πln(2)−πln∣tan(12arcsin(13)∣⇒A=π2ln(3)−π2ln(2)−π4ln(3)−π4ln(2)−π4ln∣tan(12arcsin(13)∣A=π4ln(3)−3π4ln(2)−π4ln∣tan(12arcsin(13)∣
Commented by 174 last updated on 30/Apr/20
thanks alot
Commented by mathmax by abdo last updated on 30/Apr/20
youarewelcome
Terms of Service
Privacy Policy
Contact: info@tinkutara.com