All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 9403 by alfat123 last updated on 05/Dec/16
Answered by ridwan balatif last updated on 05/Dec/16
∫015x(1−x)6dx=u.v−∫vdumisal:u=5x→du=5dxdv=(1−x)6dx∫dv=∫(1−x)6dxv=−17(1−x)7maka,∫015x(1−x)6=((5x).(−17(1−x)7)−(∫−17(1−x)75dx))01=(−5x7(1−x)7−556(1−x)8)01=−(57(1−x)7(x+18(1−x)))01=−(556(1−x)7(7x+1))01=556
∫cos3xdx=∫(cosx)cos2xdx=∫cosx(1−sin2x)dx=∫cosdx−∫sin2xcosxdx...(∗)∫sin2xcosxdx=u.v−∫vdumisal:u=sin2x→du=2sinxcosxdxdv=cosxdx→v=sinx∫sin2xcosxdx=sin3x−∫sinx(2sinxcosx)dx∫sin2xcosxdx=sin3x−2∫sin2xcosxdx3∫sin2xcosxdx=sin3x∫sin2xcosxdx=13sin3x+C...(∗∗)substitusinilaidaripersamaan(∗∗)kepersamaan(∗)∫cos3xdx=∫cosxdx−∫sin2xcosxdx=sinx−(13sin3x+C)=sinx−13sin3x+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com