Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 9403 by alfat123 last updated on 05/Dec/16

Answered by ridwan balatif last updated on 05/Dec/16

∫_0 ^1 5x(1−x)^6 dx=u.v−∫vdu  misal: u=5x→du=5dx               dv=(1−x)^6 dx           ∫dv=∫(1−x)^6 dx                  v=−(1/7)(1−x)^7   maka,∫_0 ^1 5x(1−x)^6 =((5x).(((−1)/7)(1−x)^7 )−(∫−(1/7)(1−x)^7 5dx))_0 ^1                                             =(−((5x)/7)(1−x)^7 −(5/(56))(1−x)^8 )_0 ^1                                             =−((5/7)(1−x)^7 (x+(1/8)(1−x)))_0 ^1                                             =−((5/(56))(1−x)^7 (7x+1))_0 ^1                                             =(5/(56))

015x(1x)6dx=u.vvdumisal:u=5xdu=5dxdv=(1x)6dxdv=(1x)6dxv=17(1x)7maka,015x(1x)6=((5x).(17(1x)7)(17(1x)75dx))01=(5x7(1x)7556(1x)8)01=(57(1x)7(x+18(1x)))01=(556(1x)7(7x+1))01=556

Answered by ridwan balatif last updated on 05/Dec/16

∫cos^3 xdx=∫(cosx)cos^2 xdx                         =∫cosx(1−sin^2 x)dx                         =∫cosdx −∫sin^2 xcosxdx...(∗)  ∫sin^2 xcosxdx=u.v−∫vdu  misal:u=sin^2 x→du=2sinxcosxdx              dv=cosxdx→v=sinx     ∫sin^2 xcosxdx=sin^3 x−∫sinx(2sinxcosx)dx     ∫sin^2 xcosxdx=sin^3 x−2∫sin^2 xcosxdx  3∫sin^2 xcosxdx=sin^3 x     ∫sin^2 xcosxdx=(1/3)sin^3 x+C...(∗∗)  substitusi nilai dari persamaan (∗∗) ke persamaan (∗)   ∫cos^3 xdx=∫cosxdx−∫sin^2 xcosxdx                                               =sinx−((1/3)sin^3 x+C)                         =sinx−(1/3)sin^3 x+C

cos3xdx=(cosx)cos2xdx=cosx(1sin2x)dx=cosdxsin2xcosxdx...()sin2xcosxdx=u.vvdumisal:u=sin2xdu=2sinxcosxdxdv=cosxdxv=sinxsin2xcosxdx=sin3xsinx(2sinxcosx)dxsin2xcosxdx=sin3x2sin2xcosxdx3sin2xcosxdx=sin3xsin2xcosxdx=13sin3x+C...()substitusinilaidaripersamaan()kepersamaan()cos3xdx=cosxdxsin2xcosxdx=sinx(13sin3x+C)=sinx13sin3x+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com